
Instruction manual 72-000002W Ver:01 2006.10

TP03 Serial Programmable Controller Basic Program Instructions 1

 1-1

1 Basic Program Instructions .. 2
1.1 What is a Program? .. 2
1.2 Outline of Basic Devices Used in Programming.. 2
1.3 How to Read Ladder Logic .. 3
1.4 Load, Load Inverse... 4
1.5 Out.. 5

1.5.1 Timer and Counter Variations... 5
1.5.2 Double Coil Designation .. 5

1.6 And, And Inverse.. 7
1.7 OR, OR Inverse .. 8
1.8 Load Pulse, Load Trailing Pulse... 9

1.8.1 Single Operation flags M2800 to M3071:.. 9
1.9 And Pulse, And Trailing Pulse ... 10
1.10 Or Pulse, Or Trailing Pulse... 11
1.11 Or Block ... 12
1.12 And Block .. 13
1.13 MPS, MRD and MPP ... 14
1.14 Master Control and Reset ... 16
1.15 Set and Reset .. 18
1.16 Timer, Counter (Out & Reset) .. 19

1.16.1 Basic Timers, Retentive Timers And Counters... 19
1.16.2 Normal 32 bit Counters .. 19
1.16.3 High Speed Counters.. 20

1.17 Leading and Trailing Pulse... 21
1.18 Inverse .. 22
1.19 No Operation .. 23
1.20 End ... 23

TP03 Serial Programmable Controller Basic Program Instructions 1

 1-2

1 Basic Program Instructions

1.1 What is a Program?

A program is a connected series of instructions written in a language that the
PLC can understand. There are three forms of program format; instruction,
ladder and SFC/STL.

0 LD X000
1 OR Y005
2 ANI X002
3 OUT Y005

Instruction format Ladder format SFC/STL format

1.2 Outline of Basic Devices Used in Programming

There are six basic programming devices. Each device has its own unique use.
To enable quick and easy identification each device is assigned a single
reference letter;
- X: This is used to identify all direct, physical inputs to the PLC.
- Y: This is used to identify all direct, physical outputs from the PLC.
- T: This is used to identify a timing device which is contained within the PLC.
- C: This is used to identify a counting device which is contained within the PLC.
- M and S: These are used as internal operation flags within the PLC.
All of the devices mentioned above are known as ‘bit devices’. This is a
descriptive title telling the user that these devices only have two states; ON or
OFF, 1 or 0.

Detailed device information:
 Chapter 3 contains this information in detail. However, the above is all that is

required for the rest of this chapter.

TP03 Serial Programmable Controller Basic Program Instructions 1

 1-3

1.3 How to Read Ladder Logic

Ladder logic is very closely associated to basic relay logic. There are both contacts and
coils that can be loaded and driven in different configurations. However, the basic
principle remains the same. A coil drives direct outputs of the PLC (ex. a Y device) or
drives internal timers, counters or flags (ex. T, C, M and S devices). Each coil has
associated contacts. These contacts are available in both “normally open” (NO) and
“normally closed” (NC) configurations. The term “normal(ly)” refers to the status of the
contacts when the coil is not energized. Using a relay analogy, when the coil is OFF, a
NO contact would have no current flow, that is, a load being supplied through a NO
contact would not operate. However, a NC contact would allow current to flow, hence
the connected load would be active. Activating the coil reverses the contact status, that
is, the current would flow in a NO contact and a NC contact would inhibit the flow.
Physical inputs to the PLC (X devices) have no programmable coil. These devices may
only be used in a contact format (NO and NC types are available).

Example:

Because of the close relay association, ladder logic programs can be read as current
flowing from the left vertical line to the right vertical line. This current must pass through
a series of contact representations such as X0 and X1 in order to switch the output coil
Y0 ON. Therefore, in the example shown, switching X0 ON causes the output Y0 to also
switch ON. If however, the limit switch X1 is activates, the output Y0 turns OFF. This is
because the connection between the left and the right vertical lines breaks so there is
no current flow.

TP03 Serial Programmable Controller Basic Program Instructions 1

 1-4

1.4 Load, Load Inverse

Mnemonic Function Format Devices step

[LD] Initial logical operation contact
type NO(normally open)

X,Y,M,S,T,C 1

[LDI] Initial logical operation contact
type NC(normally closed)

X,Y,M,S,T,C 1

Program example:

Basic points to remember:
- Connect the LD and LDI instructions directly to the left hand bus bar.
- Or use LD and LDI instructions to define a new block of program when using the ORB and
ANB instructions (see later sections).
The OUT instruction:

 For details of the OUT instruction (including basic timer and counter variations)
please see over the following page.

TP03 Serial Programmable Controller Basic Program Instructions 1

 1-5

1.5 Out

Mnemonic Function Format Devices Program steps

[OUT]
Final logical
operation type
coil drive

Y,M,S,T,C

Y,M:1
S, special M
Coil:2
T:3
C (16bit):3
C (32bit):5

Basic points to remember:
- Connect the OUT instruction directly to the right hand bus bar.
- It is not possible to use the OUT instruction to drive ‘X’ type input devices.
- It is possible to connect multiple OUT instructions in parallel.(for example see
above:M100/T0 configuration)

1.5.1 Timer and Counter Variations
When configuring the OUT instruction for use as either a timer (T) or counter (C) a
constant must also be entered. The constant is identified by the letter “K”(for
example above:T0 K19). In the case of a timer, the constant “K” holds the duration
data for the timer to operate, i.e. if a 100 msec timer has a constant of “K100” it will
be (100x100 msec) 10 seconds before the timer coil activates. With counters, the
constant identifies how many times the counter must be pulsed or triggered before
the counter coil activates. For example, a counter with a constant of “8” must be
triggered 8 times before the counter coil finally energizes. The following table
identifies some basic parameter data for various timers and counters;

Timer/Counter Setting constant K Actual setting Program steps
1ms Timer 1~32,767 0.001~32.676 sec
10ms Timer 0.01~327.67 sec
100ms Timer

1~32,767
0.1~3,276.7 sec

16 bit Counter 1~32,767 1~32,767

3

32 bit Counter -2,147,483,648~
+2,147,483,647

-2,147,483,648~
+2,147,483,647 5

1.5.2 Double Coil Designation
Double or dual coiling is not a recommended practice.
Using multiple output coils of the same device can
cause the program operation to become unreliable. The
example program shown opposite identifies a double
coil situation; there are two Y3 outputs. The following
sequence of events will occur when inputs X1 = ON
and X2 = OFF;

 The first Y3 turns ON because X1 is ON. The contacts associated with Y3 also
energize when the coil of output Y3 energizes. Hence, output Y4 turns ON.

 The last and most important line in this program looks at the status of input X2.If this

TP03 Serial Programmable Controller Basic Program Instructions 1

 1-6

is NOT ON then the second Y3 coil does NOT activate. Therefore the status of the
Y3 coil updates to reflect this new situation, i.e. it turns OFF. The final outputs are
then Y3 = OFF and Y4 = ON.

Use of dual coils:
 Always check programs for incidents of dual coiling. If there are dual coils the

program will not operate as expected - possibly resulting in unforeseen physical
The last coil effect:

 In a dual coil designation, the coil operation designated last is the effective coil.
That is, it is the status of the previous coil that dictates the behavior at the current
point in the program.

Input durations:
The ON or OFF duration of the PLC inputs
must be longer than the operation cycle
time of the PLC.
Taking a 10 msec (standard input filter)
response delay into account, the ON/OFF
duration must be longer than 20 msec if
the operation cycle (scan time) is 10 msec.
Therefore, in this example, input pulses of
more than

25Hz (1sec/(20msec ON + 20msec
OFF)) cannot be sensed.

There are applied instructions provided to handle such high speed input requests.
○1 :Input ON state NOT recognized
○2 : Input ON state recognized
○3 : Input OFF state NOT recognized
○4 : 1 program processing
○5 : Input processing
○6 : Output processing
○7 : A full program scan/operation cycle

TP03 Serial Programmable Controller Basic Program Instructions 1

 1-7

1.6 And, And Inverse

Mnemonic Function Format Devices Program steps

[AND]
Serial connection of
NO (normally open)
contacts

X,Y,M,S,T,C 1

[ANI]
Serial connection of
NC (normally open)
contacts

X,Y,M,S,T,C 1

Program example:
Basic points to remember:
- Use the AND and ANI instructions for
serial connection of contacts. As many
contacts as required can be connected
in series (the number of contacts in
series is not limitation)
- The output processing to a coil,
through a contact, after writing the

initial OUT instruction is called a “follow-on” output. Follow-on outputs are permitted
repeatedly as long as the output order is correct.

K10

C022

K10

X001 X005

C002

X004 X003
C023

C023

LD X002
ORI C022
AND X005
OUT C022 K10

LD X004
ORI C023
ANI X003
OUT C023 K10

TP03 Serial Programmable Controller Basic Program Instructions 1

 1-8

1.7 OR, OR Inverse

Mnemonic Function Format Devices Program
steps

[OR]
Parallel connection of
NO(normally open)
contacts

X,Y,M,S,
T,C 1

[ORI]
Parallel connection of
NC(normally open)
contacts

X,Y,M,S,
T,C 1

Program example
:
Basic points to remember:
- Use the OR and ORI
instructions for parallel
connection of contacts. To
connect a block that contains
more than one contact
connected in series to another
circuit block in parallel, use an
ORB instruction.
- Connect one side of the
OR/ORI instruction to the left
hand bus bar.

Y001X001

X002

M001

Y001

LD X001
ORI X002
OR M001
OUT Y001
LDI Y001
AND X003
OR M002
ANI X004
OR M003
OUT M002

X003 X004 M002

M002

M003

TP03 Serial Programmable Controller Basic Program Instructions 1

 1-9

1.8 Load Pulse, Load Trailing Pulse

Mnemonic Function Format Devices Program
steps

[LDP]
Initial logical
operation-Rising edge
pulse

X,Y,M,S,T,C 2

[LDF]
Initial logical
operation-Falling/ trailing
edge pulse

X,Y,M,S,T,C 2

Program example:

Basic points to remember:
- Connect the LDP and LDF instructions directly to the left hand bus bar.
- Or use LDP and LDF instructions to define a new block of program when using the ORB
and ANB instructions (see later sections).
- LDP is active for one program scan after the associated device switches from OFF to ON.
- LDF is active for one program scan after the associated device switches from ON to OFF.

1.8.1 Single Operation flags M2800 to M3071:
 The pulse operation instructions, when used with auxiliary relays M2800 to

M3071,only activate the first instruction encountered in the program scan, after
the point in the program where the device changes. Any other pulse operation
instructions will remain inactive.

 This is useful for use in STL programs (see chapter 3) to perform single step
operation using a single device.

 Any other instructions (LD, AND, OR, etc.) will operate as expected.

TP03 Serial Programmable Controller Basic Program Instructions 1

 1-10

1.9 And Pulse, And Trailing Pulse

Mnemonic Function Format Devices Program
steps

[ANDP] Serial connection of
Rising edge pulse

X,Y,M,S
,T,C 2

[ANDF] Serial connection of
Falling/trailing edge pulse

X,Y,M,S
,T,C 2

Program example:

Basic points to remember:

- Use the ANDP and ANDF instructions for the serial connection of pulse contacts.
- Usage is the same as for AND and ANI; see earlier.
- ANP is active for one program scan after the associated device switches from OFF to
ON.
- ANF is active for one program scan after the associated device switches from ON to
OFF.

Single operation flags M2800 to M3071:
 When used with flags M2800 to M3071 only the first instruction will activate. For

details see 1.8.1

M000X001

X002

X003 X004 M1

 LDP X001
 ORP X002
 OUT M000
 LDP X003
 ANDP X004
 OUT M1

TP03 Serial Programmable Controller Basic Program Instructions 1

 1-11

1.10 Or Pulse, Or Trailing Pulse

Mnemonic Function Format Devices Program
steps

[ORP] Parallel connection of
Rising edge pulse

X,Y,M,S,T,C 2

[ORF]
Parallel connection of
Falling/trailing edge
pulse

X,Y,M,S,T,C 2

Program example:
Basic points to remember:
- Use the ORP and ORF instructions
for the parallel connection of pulse
contacts.
- Usage is the same as for OR and
ORI; see earlier.
- ORP is active for one program
scan after the associated device
switches from OFF to ON.

- ORF is active for one program scan after the associated device switches from ON to
OFF.

Single operation flags M2800 to M3071:
 When used with flags M2800 to M3071 only the first instruction will activate. For

details see 1.8.1

M000X001

X002

X003 X004 M1

LDF X001
ORF X002
OUT M000
LDF X003
ANDF X004
OUT M1

TP03 Serial Programmable Controller Basic Program Instructions 1

 1-12

1.11 Or Block

Mnemonic Function Format Devices Program
steps

[ORB]
Parallel connection
of multiple contact
circuits

N/A 1

Program example:
Basic points to remember:
- An ORB instruction is an

independent instruction and is not
associated with any device number.
- Use the ORB instruction to connect
multi-contact circuits (usually serial
circuit blocks) to the preceding circuit in
parallel. Serial circuit blocks are those
in which more than one contact

connects in series or the ANB instruction is used.
- To declare the starting point of the circuit block use a LD or LDI instruction. After

completing the serial circuit block, connect it to the preceding block in parallel using the
ORB instruction.

Batch processing limitations:
 When using ORB instructions in a batch, use no more than 8 LD and LDI

instructions in the definition of the program blocks (to be connected in parallel).
Ignoring this will result in a program error (see the right most program listing).

Sequential processing limitations:
 There are no limitations to the number of parallel circuits when using an ORB

instruction in the sequential processing configuration (see the left most program
listing).

TP03 Serial Programmable Controller Basic Program Instructions 1

 1-13

1.12 And Block

Mnemonic Function Format Devices Program
steps

[ANB]
Serial connection of
multiple parallel
circuits

N/A 1

Program example:
Basic points to remember:

- An ANB instruction is an independent instruction and is not associated with any device
number
- Use the ANB instruction to connect multi-contact circuits (usually parallel circuit blocks)

to the preceding circuit in series. Parallel circuit
blocks are those in which more than one
contact connects in parallel or the ORB
instruction is used.
- To declare the starting point of the circuit
block, use a LD or LDI instruction. After
completing the parallel circuit block, connect it
to the preceding block in series using the ANB
instruction.

Batch processing limitations:
 When using ANB instructions in a batch, use no more than 8 LD and LDI

instructions in the definition of the program blocks (to be connected in parallel).
Ignoring this will result in a program error (see ORB explanation for example).

Sequential processing limitations:
 It is possible to use as many ANB instructions as necessary to connect a number

of parallel circuit blocks to the preceding block in series (see the program listing).

TP03 Serial Programmable Controller Basic Program Instructions 1

 1-14

1.13 MPS, MRD and MPP

Mnemonic Function Format Devices Program
steps

[MPS] Store the current result of the
internal PLC operations N/A 1

[MRD] Reads the current result of
the internal PLC operations

N/A 1

[MPP]
Pops(recalls and
removes)the currently
stored result

N/A 1

Basic points to remember:

- Use these instructions to connect output coils to the left hand side of a contact. Without
these instructions connections can only be made to the right hand side of the last
contact.

- MPS stores the connection point of the ladder circuit so that further coil branches can
recall the value later.

- MRD recalls or reads the previously stored connection point data and forces the next
contact to connect to it.

- MPP pops (recalls and removes) the stored connection point. First, it connects the next
contact, then it removes the point from the temporary storage area.

- For every MPS instruction there MUST be a corresponding MPP instruction.
- The last contact or coil circuit must connect to an MPP instruction.
- At any programming step, the number of active MPS-MPP pairs must be no greater than
8.

MPS, MRD and MPP usage:
 When writing a program in ladder format, programming tools automatically add all

MPS, MRD and MPP instructions at the program conversion stage. If the generated
instruction program is viewed, the MPS, MRD and MPP instructions are present.

 When writing a program in instruction format, it is entirely down to the user to enter
all relevant MPS, MRD and MPP instructions as required.

Program example

TP03 Serial Programmable Controller Basic Program Instructions 1

 1-15

X0 X1

X2

X3 X4

X5 X6

X7

X10

X11

Y2

Y3

Y1

Y0

MPS

MRD

MPP

0 LD X 0 12 ANB
1 MPS 13 OUT Y 1
2 LD X 1 14 MPP
3 OR X 2 15 AND X 7
4 ANB 16 OUT Y 2
5 OUT Y0 17 LD X 10
6 MRD 18 OR X 11
7 LD X 3 19 ANB
8 AND X 4 20 OUT Y 3
9 LD X 5
10 AND X 6
11 ORB

X0 X1 X2

X3

X4 X5

X6

Y2

Y3

Y1

Y0

MPS

MRD

MPP

0 LD X 0 9 MPP
1 MPS 10 AND X 4
2 AND X 1 11 MPS
3 MPS 12 AND X 5
4 AND X2 13 OUT Y 2
5 OUT Y0 14 MPP
6 MPP 15 AND X 6
7 AND X 3 16 OUT Y 3
8 OUT Y 1

MPS

MPS
MPP

X0 X1 X2 X3 X4

Y2

Y3

Y1

Y0

MPS

MPP

0 LD X 0 9 OUT Y 0
1 MPS 10 MPP
2 AND X 1 11 OUT Y 1
3 MPS 12 MPP
4 AND X 2 13 OUT Y 2
5 MPS 14 MPP
6 AND X 3 15 OUT Y 3
7 MPS 16 MPP
8 AND X 4 17 OUT Y 4

Y4

TP03 Serial Programmable Controller Basic Program Instructions 1

 1-16

1.14 Master Control and Reset

Mnemonic Function Format Devices Program
steps

[MC]
Denotes the start of
a master control
block

Y.M(no special M
coils allowed)N
denotes the nets
level(N0 to N7)

3

[MCR]
Denotes the end of
a master control
block

N denotes the nets
level(N0 to N7)to
be reset

2

Program example:

Basic points to remember:
- After the execution of an
MC instruction, the bus line
(LD, LDI point) shifts to a
point after the MC
instruction. An MCR
instruction returns this to
the original bus line.
- The MC instruction also
includes a nest level

pointer N. Nest levels are from the range N0 to N7 (8 points). The top nest level is ‘0’
and the deepest is ‘7’.
- The MCR instruction resets each nest level. When a nest level is reset, it also resets
ALL deeper nest levels. For example, MCR N5 resets nest levels 5 to 7.
- When input X1=ON, all instructions between the MC and the MCR instruction execute.
- When input X1=OFF, none of the instruction between the MC and MCR instruction
execute; this resets all devices except for retentive timers, counters and devices driven
by SET/RST instructions.
- The MC instruction can be used as many times as necessary, by changing the device
number Y and M. Using the same device number twice is processed as a double coil
(see section 1.5.2). Nest levels can be duplicated but when the nest level resets, ALL
occurrences of that level reset and not just the one specified in the local MC.

X001

X002 Y001

MC N0 M001

X003 Y002

MRC N0

M001N0

LD X001
MC N0
SP M001
LD X002
OUT Y001
LD X003
OUT Y002
MCR N0

TP03 Serial Programmable Controller Basic Program Instructions 1

 1-17

TP03 Serial Programmable Controller Basic Program Instructions 1

 1-18

1.15 Set and Reset

Mnemonic Function Format Devices Program steps

[SET] Sets a bit device
permanently ON

Y.M,S

[RST]

Resets a bit
device
permanently
OFF

Y,M,S,D,V,Z

Y,M:1
S,special M : 2
D, V and Z:3

Program example:

Basic points to remember:
- Turning ON X001 causes Y001 to turn
ON. Y001 remains ON even after X001
turns OFF.
- Turning ON X002 causes Y001 to turn
OFF. Y001 remains OFF even after
X002 turns OFF.
-SET and RST instructions can be used
for the same device as many times as
necessary. However, the last
instruction activated determines the
current status.
- It is also possible to use the RST
instruction to reset the contents of data
devices such as data registers, index
registers etc. The effect is similar to
moving ‘K0’ into the data device.

SET Y001
X001

RST Y001
X002

SET M1
X003

RST M1
X004

SET S1
X005

RST S1
X006

RST D1
X007

RST T247
X007

K10
X001 T247

LD X001
SET Y001
LD X002
RST Y001
LD X003
SET M1
LD X004
RST M1
LD X005
SET S1
LD X006
RST S1
LD X007
RST D1
LD X001
OUT T247 K10
LD X007
RST T247

TP03 Serial Programmable Controller Basic Program Instructions 1

 1-19

1.16 Timer, Counter (Out & Reset)

Mnemonic Function Format Devices Program steps

[OUT] Driving timer or counter
coils

T,C 32 bit Counters:5
Others:3

[RST]
Reset timer and counter,
coils contacts and
current values

T,C T,C:2

Program example:
1.16.1 Basic Timers, Retentive Timers And Counters

These devices can all be reset at any time by driving the
RST instruction (with the number of the device to be reset).
On resetting, all active contacts, coils and current value
registers are reset for the selected device. In the example,
T246, a1msec retentive timer, is activate while X011 is ON.
When the current value of T246 reaches the preset ‘K’
value, i.e. 1234, the timer coil for T246 will be activated.
This drives the NO contact ON. Hence, Y0 is switched ON.
Turning ON X010 will reset timer T246 in the manner
described previously. Because the T246 contacts are reset,
the output Y0 will be turned OFF.

Retentive timers:

 For more information on retentive timers please see 3.9.3.

1.16.2 Normal 32 bit Counters
The 32 bit counter C200 counts (up-count, down-count) according to the ON/OFF
state of M8200. In the example program (see 1.16.1) C200 is being used to count
the number of OFF ~ ON cycles of input X4.The output contact is set or reset
depending on the direction of the count, upon reaching a value equal (in this
example) to the contents of data registers D1,D0 (32 bit setting data is required for
a 32 bit counter).The output contact is reset and the current value of the counter is
reset to ‘0’ when input X3 is turned ON.

RST T246
X011

T246

Y000

X010

T246 K1234

M8200
X020

X030
RST C200

C200
X040

D0

Y001
C200

TP03 Serial Programmable Controller Basic Program Instructions 1

 1-20

1.16.3 High Speed Counters
High speed counters have selectable count directions.
The directions are selected by driving the appropriate
special auxiliary M coil. The example shown to the
right works in the following manner; when X010 is ON,
counting down takes place.
When X010 is OFF, counting up takes place. In the
example the output contacts of counter C∆∆∆ and its
associated current count values are reset to “0”.
When X011 is turned ON. When X012 is turned ON
the driven counter is enabled.

This means it will be able to start counting its assigned input signal (this will not be X012
- high speed counters are assigned special input signals, please see 3.11).

Availability of devices:
 Not all devices identified here are available on all programmable controllers.

Ranges of active devices may vary from PLC to PLC. Please check the specific
availability of these devices on the selected PLC before use. For more information
on high speed counters please see 3.11. For PLC device ranges please see
chapter 7.

TP03 Serial Programmable Controller Basic Program Instructions 1

 1-21

1.17 Leading and Trailing Pulse

Mnemonic Function Format Devices Program steps

[PLS] Rising edge pulse

Y,M(no special
M coils allowed) 2

[PLF] Falling/trailing
edge pulse

Y,M(no special
M coils
allowed)

2

Program example:

Basic points to remember:
- When a PLS instruction is
executed, object devices Y and M
operate for one operation cycle
after the drive input signal has
turned ON.
- When a PLF instruction is
executed, object devices Y and M
operate for one operation cycle

after the drive input signal has turned OFF.

- When the PLC status is changed
from RUN to STOP and back to
RUN with the input signals still ON,
PLS M0 is operated again. However,
if an M coil which is battery backed
(latched) was used instead of M0 it
would not re-activate. For the
battery backed device to be

re-pulsed, its driving input (ex. X0) must be switched OFF during the RUN/STOP/RUN
sequence before it will be pulsed once more.

PLS M0
X000

SET Y001
M0

PLF M1
X001

RST Y001
M1

LD X000
PLS M0
LD M0
SET Y001

LD X001
PLF M1
LD M1
RST Y001

TP03 Serial Programmable Controller Basic Program Instructions 1

 1-22

1.18 Inverse

Mnemonic Function Format Devices Program
steps

[INV]
Invert the current
result of the internal
PLC operations

N/A 1

Program example:

Basic points to remember:
- The INV instruction is used to change (invert) the
logical state of the current ladder network at the inserted
position.
- Usage is the same as for AND and ANI; see earlier.

Usages for INV
 Use the invert instruction to quickly change the logic of a complex circuit. It is also

useful as an inverse operation for the pulse contact instructions LDP, LDF, ANP, etc.

TP03 Serial Programmable Controller Basic Program Instructions 1

 1-23

1.19 No Operation

Mnemonic Function Format Devices Program
steps

[NOP] No operation or null
step N/A N/A 1

Basic points to remember:
- Writing NOP instructions in the middle of a program minimizes step number changes
when changing or editing a program.

- It is possible to change the operation of a circuit by replacing programmed instructions
with NOP instructions.

- Changing a LD, LDI, ANB or an ORB instruction with a NOP instruction will change the
circuit considerably; quite possibly resulting in an error being generated.

- After the program ‘all clear operation’ is executed, all of the instructions currently in the
program are over written with NOP’s.

1.20 End

Mnemonic Function Format Devices Program
steps

[END] Forces the current
program scan to end

N/A 1

Basic points to remember:

- Placing an END instruction in a program forces that program to end the current scan
and carry out the updating processes for both inputs and outputs.

- Inserting END instructions in the middle of the program helps program debugging as
the section after the END instruction is disabled and isolated from the area that is being
checked. Remember to delete the END instructions from the blocks which have
already been checked.

- When the END instruction is processed the PCs watchdog timer is automatically
refreshed.

A program scan:

 A program scan is a single processing of the loaded program from start to finish,
This includes updating all inputs, outputs and watchdog timers. The time period for
one such process to occur is called the scan time. This will be dependent upon
program length and complexity. Immediately the current scan is completed the next
scan begins. The whole process is a continuous cycle. Updating of inputs takes
place at the beginning of each scan while all outputs are updated at the end of the
scan.

TP03 Serial Programmable Controller STL Program 2

 2-1

2 STL Programming.. 2
2.1 What is STL, SFC And IEC1131 Part 3? ... 2
2.2 How STL Operates... 3

2.2.1 Each step is a program ... 3
2.3 How To Start And End An STL Program ... 4

2.3.1 Embedded STL programs... 4
2.3.2 Activating new states ... 5
2.3.3 Terminating an STL Program... 5

2.4 Moving Between STL Steps... 6
2.4.1 Using SET to drive an STL coil ... 6
2.4.2 Using OUT to drive an STL coil .. 7

2.5 Rules and Techniques For STL programs .. 7
2.5.1 Basic Notes On The Behavior Of STL programs... 7
2.5.2 Single Signal Step Control ... 9

2.6 Restrictions Of Some Instructions When Used With STL ... 9
2.7 Using STL To Select The Most Appropriate Program ... 10
2.8 Using STL To Activate Multiple Flows Simultaneously.. 11
2.9 General Rules For Successful STL Branching... 12
2.10 Programming Examples ... 15

2.10.1 A Simple STL Flow.. 15
2.10.2 A Selective Branch/ First State Merge Example Program.................................... 16

2.11 Advanced STL Use .. 19

TP03 Serial Programmable Controller STL Program 2

 2-2

2 STL Programming

This chapter differs from the rest of the contents in this manual as it has been written
with a training aspect in mind. STL/SFC programming, although having been
available for many years, is still misunderstood and misrepresented. We at
Mitsubishi would like to take this opportunity to try to correct this oversight as we see
STL/SFC programming becoming as important as ladder style programming.

2.1 What is STL, SFC And IEC1131 Part 3?

The following explanation is very brief but is designed to quickly outline the
differences and similarities between STL, SFC and IEC1131 part 3.
In recent years Sequential Function Chart (or SFC) style programming (including
other similar styles such as Grafcet and Function plan) have become very popular
through out Europe and have prompted the creation of IEC1131 part 3.
The IEC1131 SFC standard has been designed to become an interchangeable
programming language. The idea being that a program written to IEC1131 SFC
standards on one manufacturers PLC can be easily transferred (converted) for use
on a second manufacturers PLC.STL programming is one of the basic programming
instructions included in all FX PLC family members. The abbreviation STL actually
means Step Ladder programming. STL programming is a very simple concept to
understand yet can provide the user with one of the most powerful programming
techniques possible. The key to STL lies in its ability to allow the programmer to
create an operational program which ‘flows’ and works in almost exactly the same
manner as SFC. This is not a coincidence as this programming technique has been
developed deliberately to achieve an easy to program and monitor system. One of
the key differences to Mitsubishi’s STL programming system is that it can be entered
into a PLC in 3 formats. These are:
Ι) Instruction - a word/mnemonic entry system
ΙΙ) Ladder - a graphical program construction method using a relay logic symbols
ΙΙΙ) SFC - a flow chart style of STL program entry (similar to SFC)

General note:

 IEC1131-3: 03.1993 Programmable
controllers; part 3: programming languages.
The above standard is technically identical
to the ‘Euro-Norm’
EN61131-3: 07.1993

TP03 Serial Programmable Controller STL Program 2

 2-3

2.2 How STL Operates

As previously mentioned, STL is a system which allows the user to write a program
which functions in much the same way as a flow chart, this can be seen in the
diagram opposite.
STL derives its strength by organizing a larger program into smaller more
manageable parts. Each of these parts can be referred to as either a state or a step.
To help identify the states, each is given a unique identification number. These
numbers are taken from the state relay devices (see page 4-6 for more details).

2.2.1 Each step is a program
Each state is completely isolated from all other states within the whole program. A
good way to envisage this, is that each state is a separate program and the user
puts each of those programs together in the order that they require to perform their
task. Immediately this means that states can be reused many times and in
different orders. This saves on programming time AND cuts down on the number
of programming errors encountered.
A Look inside an STL
On initial inspection the STL program
looks as if it is a rather basic flow
diagram. But to find out what is really
happening the STL state needs to be put
‘under a microscope’ so to peak. When a
single state is examined in more detail,
the sub-program can be viewed. With the
exception of the STL instruction, it will be
immediately seen that the STL
sub-program looks just like ordinary
programming.
○1 The STL instruction is shown as a ‘fat’ normally open contact. All
programming after an STL instruction is only active when the associated state
coil is active.
○2 The transition condition is also written using standard programming. This idea
re-enforces the concept that STL is really a method of sequencing a series of
events or as mentioned earlier ‘of joining lots of smaller programs together’.

S22

T0

Y22
STL

T0

 SET S27

K20

T0

S 22

1

1

2

2

TP03 Serial Programmable Controller STL Program 2

 2-4

Combined SFC Ladder representation
Sometimes STL programs will be written in
hard copy as a combination of both flow
diagram and internal sub-program. (example
shown below).
Identification of contact states

 Please note the following convention is
used:

Normally Open contact
Normally Closed contact

Common alternatives are ‘a’ and ‘b’ identifiers
for normally Open, Normally Closed states or
often a line drawn over the top of the Normally Closed contact name is used,
e.g.X000.

2.3 How To Start And End An STL Program

Before any complex programming can be undertaken the basics of how to start and
more importantly how to finish an STL program need to be examined.

2.3.1 Embedded STL programs
An STL style program does not have to
entirely replace a standard ladder logic
program. In fact it might be very difficult to
do so. Instead small or even large section
of STL program can be entered at any
point in a program. Once the STL task has
been completed the program must go back
to processing standard program
instructions until the next STL program
block. Therefore, identifying the start and
end of an STL program is very important.

TP03 Serial Programmable Controller STL Program 2

 2-5

2.3.2 Activating new states
Once an STL step has been selected, how is it used and how is the program ‘driven’?
This is not so difficult; if it is considered that for an STL step to be active its associated
state coil must be ON. Hence, to start an STL sequence all that has to be done is to
drive the relevant state ON.
There are many different methods
to drive a state, for example the
initial state coils could be pulsed,
SET or just included in an OUT
instruction. However, within
Mitsubishi’s STL programming
language an STL coil which is
SET has a different meaning than
one that is included in an OUT
instruction.
Note: For normal STL operation it is recommended
that the states are selected using the SET instruction.
To activate an STL step its state coil is SET ON.

Initial Steps
For an STL program which is to be activated on the
initial power up of the PLC, a trigger similar to that
shown opposite could be used, i.e. using M8002 to
drive the setting of the initial state.
The STL step started in this manner is often referred to as the initial step. Similarly, the
step activated first for any STL sequence is also called the initial step.

2.3.3 Terminating an STL Program

Once an STL program has been started the programmable controllers CPU will
process all following instructions as being part of that STL program. This means that
when a second program scan is started the normal instructions at the beginning of the
program are considered to be within the STL program. This is obviously incorrect and
the CPU will proceed to identify a programming error and disable the programmable
controllers operation.
This scenario may seem a little strange but it does
make sense when it is considered that the STL
program must return control to the ladder program after
STL operation is complete. This means the last step in
an STL program needs to be identified in some way.

Returning to Standard Ladder
This is achieved by placing a RET or RETurn
instruction as the last instruction in the last STL step of
an STL program block. This instruction then returns

Y22
STL

T0

 SET S27

K20

T0

S 22

S 27

STL

TP03 Serial Programmable Controller STL Program 2

 2-6

programming control to the ladder sequence.

Note: The RET instruction can be used to separate STL programs into sections, with
standard ladder between each STL program. For display of STL in SFC style format the
RET instruction is used to indicate the end of a complete STL program.

2.4 Moving Between STL Steps

To activate an STL step the user must first drive the state coil. Setting the coil has already
been identified as a way to start an STL program, i.e. drive an initial state. It was also noted
that using an OUT statement to driving a state coil has a different meaning to the SET
instruction. These differences will now be explained:

2.4.1 Using SET to drive an STL coil
SET is used to drive an STL state coil to make the step active. Once the current STL
step activates a second following step, the source STL
coil is reset. Hence, although SET is used to activate a
state the resetting is automatic.
However, if an STL state is driven by a series of
standard ladder logic instructions, i .e. not a preceding
STL state, then standard programming rules apply. In
the example shown opposite S20 is not reset even
after S30 or S21 have been driven In addition, if S20 is
turned OFF, S30 will also stop operating. This is
because S20 has not been used as an STL state. The
first instruction involving the status of S20 is a standard Load instruction and NOT an
STL instruction.
Note:
If a user wishes to forcibly reset an STL step,
using the RST or ZRST (FNC40) instructions
would perform this task

 SET is used to drive an immediately following STL step which typically will have
a larger STL state number than the current step.

 SET is used to drive STL states which occur within the enclosed STL program
flow, i.e. SET is not used to activate a state which appears in an unconnected,
second STL flow diagram.

.

TP03 Serial Programmable Controller STL Program 2

 2-7

2.4.2 Using OUT to drive an STL coil
This has the same operational features as using
SET. However, there is one major function which
SET is not used. This is to make what is termed
‘distant jumps’.
OUT is used for loops and jumps
If a user wishes to ‘jump’ back up a program, i.e.
go back to a state which has already been
processed, the OUT instruction would be used
with the appropriate STL state number.
Alternatively the user may wish to make a large
‘jump’ forwards skipping a whole section of STL
programmed states.

Out is used for distant jumps
If a step in one STL program flow was required to
trigger a step in a second, separate STL program
flow the OUT instruction would be used.

Note: Although it is possible to use SET for jumps
and loops use of OUT is needed for display
of STL in SFC like structured format.

2.5 Rules and Techniques For STL programs

It can be seen that there are a lot of advantages to using STL style programming but there
are a few points a user must be aware of when writing the STL sub-programs. These are
highlighted in this section.
2.5.1 Basic Notes On The Behavior Of STL programs

 When an STL state becomes active its program is processed until the next step is
triggered. The contents of the program can contain all of the programming items
and features of a standard ladder program, i.e. LoaD, AND OR, OUT, ReSeT etc.,
as well as applied instructions.

 When writing the sub-program of an STL
state, the first vertical ‘bus bar’ after the STL
instruction can be considered in a similar
manner as the left hand bus bar of a standard
ladder program.
Each STL step makes its own bus bar. This
means that a user, cannot use an MPS
instruction directly after the STL instruction
(see ○1), i.e. There needs to be at least a

Y001

Y014

Y005

STL

S005 X001

X000

X012

X013
RET

1

TP03 Serial Programmable Controller STL Program 2

 2-8

single contact before the MPS instruction.

Note: Using out coils and even applied instructions immediately after an STL
instruction is permitted.

 In normal programming using dual coils is not an

acceptable technique. However repetition of a coil
in separate STL program blocks is allowed.
This is because the user can take advantage of the
STL’s unique feature of isolating all STL steps
except the active STL steps.
This means in practice that there will be no conflict
between dual coils. The example opposite shows
M11 used twice in a single STL flow.

Caution: The same coil should NOT be programmed in Steps that will be active at
the same time as this will result in the same
problem as other dual coils.

 When an STL step transfers control to the

next STL step there is a period (one scan)
while both steps are active. This can cause
problems with dual coils; particularly timers.
If timers are dual coiled care must be taken to
ensure that the timer operation is completed
during the active STL step.
If the same timer is used in consecutive steps then it is possible that the timer coil is
never deactivated and the contacts of the timer will not be reset leading to incorrect
timer operation.
The example opposite identifies an unacceptable use of timer T001. When control
passes from S30 to S31 T001 is not reset because its coil is still ON in the new
step.
Note: As a step towards ensuring the correct operation of the dual timers they
should not be used in consecutive STL steps.
Following this simple rule will ensure each timer will be reset correctly before its
next operation.

 As already mentioned, during the transfer between

steps, the current and the selected steps will be
simultaneously active for one program scan. This
could be thought of as a hand over or handshaking
period.
This means that if a user has two outputs contained in
consecutive steps which must NOT be active

TP03 Serial Programmable Controller STL Program 2

 2-9

simultaneously they must be interlocked. A good example of this would be the drive
signals to select a motors rotation direction. In the example Y11 and Y10 are shown
interlocked with each other.

2.5.2 Single Signal Step Control
Transferring between active STL steps can be controlled by a single signal.

 Using locking devices
In this example it is necessary to program separate locking devices, and the
controlling signal must only pulse ON. This is to prevent the STL programs from
running through.
The example shown below identifies the
general program required for this method.
- S30 is activated when M0 is first pulsed ON.
- The operation of M1 prevents the sequence

from continuing because although M0 is ON,
the transfer requirements need M0 to be ON
and M1 to be OFF.

- After one scan the pulsed M0 and the ‘lock’
device M1 are reset.

- On the next pulse of M0 the STL step will transfer program control from S31 to the
next step in a similar manner. This time using M2 as the ‘lock’ device because
dual coils in successive steps is not allowed.

- The reason for the use of the ‘lock’ devices M1 and M2 is because of the
handshaking period when both states involved in the transfer of program control
are ON for 1 program scan. Without the ‘locks’ it would be possible to immediately
skip through all of the STL states in one go!

2.6 Restrictions Of Some Instructions When Used With STL

Although STL can operate with most basic and applied instructions there are a few
exceptions. As a general rule STL and MC-MCR programming formats should not be
combined. Other instruction restrictions are listed in the table below.

Basic Instructions

Operational State
LD/LDI/LDP/LDF,AND

/ANI/ANDP/ANDF/OR/

ORI/ORF,INV,OUT/SE

T/RST,PLS/PLF

ANB/ORB

/MPS/

MRD/MPP

MC/

MCR

Initial and general
states

√ √ X

TP03 Serial Programmable Controller STL Program 2

 2-10

Output
processing

√ √ X

Branching
and
merging
states

Transfer
processing

√ X X

Restrictions on using applied instructions
 Most applied instructions can be used within STL programs. Attention must be paid

to the way STL isolates each non-active step. It is recommended that when applied
instructions are used their operation is completed before the active STL step
transfers to the next step.
Other restrictions are as follows:
- FOR - NEXT structures can not contain STL program blocks.
- Subroutines and interrupts can not contain STL program blocks.
- STL program blocks can not be written after an FEND instruction.
- FOR - NEXT instructions are allowed within an STL program with a nesting of up
to 4 levels.

Using ‘jump’ operations with STL
 Although it is possible to use the program jump operations (CJ instruction) within

STL program flows, this causes additional and often unnecessary program flow
complications. To ensure easy maintenance and quick error finding it is
recommended that users do not write jump instructions into their STL programs.

2.7 Using STL To Select The Most Appropriate Program

So far STL has been considered as a simple flow charting programming language. One of
STL’s exceptional features is the ability to create programs which can have several
operating modes. For example certain machines require a selection of ‘manual’ and
‘automatic’ modes, other machines may need the ability to select the operation or
manufacturing processes required to produce products ‘A’, ‘B’, ‘C’, or ‘D’. STL achieves
this by allowing multiple program branches to originate from one STL state. Each branch is
then programmed as an individual operating mode, and because each operating mode
should act individually, i.e. there should be no other modes active; the selection of the
program branch must be mutually exclusive. This type of program construction is called
“Selective Branch Programming”. An example instruction program can be seen below, (this
is the sub-program for STL state S20 only) notice how each branch is SET by a different
contact.

TP03 Serial Programmable Controller STL Program 2

 2-11

A programming construction to split the program flow between different branches is very
useful but it would be more useful if it could be used with a method to rejoin a set of
individual branches.

This type of STL program construction is called a “First State Merge” simply because the
first state (in the example S29, S39 or S49) to complete its operation will cause the
merging state (S50) to be activated. It should be noticed how each of the final STL states
on the different program branches call the same “joining” STL state.

2.8 Using STL To Activate Multiple Flows Simultaneously

In the previous branching technique, it
was seen how a single flow could be
selected from a group. The following
methods describe how a group of
individual flows can be activated
simultaneously. Applications could
include vending machines which have to
perform several tasks at once, e.g.

boiling water, adding different taste ingredients (coffee, tea, milk, sugar) etc. In the
example below when state S20 is active and X0 is then switched ON, states S21, S31 and
S41 are ALL SET ON as the next states. Hence, three separate, individual, branch flows

TP03 Serial Programmable Controller STL Program 2

 2-12

are ‘set in motion’ from a single branch point. This programming technique is often called a
‘Parallel Branch’. To aid a quick visual distinction, parallel branches are marked with
horizontal, parallel lines.

When a group of branch flows are activated, the user will often either;

a) ‘Race’ each flow against its counter parts. The flow which completes fastest would
then activate a joining function (“First State Merge” described in the previous section)
OR

b) The STL flow will not continue until ALL branch flows have completed there tasks.
This is called a ‘Multiple State Merge”.

An explanation of Multiple State Merge now follows below.
In the example below, states S29, S39 and S49 must all be active. If the instruction list is
viewed it can be seen that each of the states has its own operating/processing instructions
but that also additional STL instructions have been linked together (in a similar concept as
the basic AND instruction). Before state S50 can be activated the trigger conditions must

also be active, in this
example these are X10, X11
and X12. Once all states
and input conditions are
made the merging or joining
state can be SET ON. As is
the general case, all of the
states used in the setting
procedure are reset
automatically
Because more than one
state is being
simultaneously joined with
further states (some times

described as a parallel merge),a set of horizontal parallel lines are used to aid a quick
visual recognition.

2.9 General Rules For Successful STL Branching

For each branch point 10 further branches may be programmed. There are no limits to the
number of states contained in a single STL flow. Hence, the possibility exists for a single
initial state to branch to 10 branch flows which in turn could each branch to a further 8
branch flows etc. If the programmable controllers program is read/written using instruction

or ladder formats the above rules are
acceptable. However, users of the programming
package who are utilizing the STL programming
feature are constrained by further restrictions to
enable automatic STL program conversions
(please see page 3-15 for more details).

* *

* *

TP03 Serial Programmable Controller STL Program 2

 2-13

When using branches, different types of branching /merging cannot be mixed at the same
branch point. The item marked with a ‘S’ are transfer condition which are not permitted.

The following branch configurations/modifications are recommended:

↓ Re-write as ↓ Re-write as ↓ Re-write as ↓ Re-write as

↓ Instruction format .. ↓ Instruction

format ..
↓ Instruction

format ..
↓ Instruction format ..

STL S20 STL S 20 STL S 20 STL S 20

LD X0 STL S 30 LD X0 STL S 30

SET S100 STL S 40 SET S102 LD X000

STL S 30 LD X0 STL S 30 SET S103

LD X1 SET S101 LD X1 STL S103

SET S100 STL S101 SET S102 LD X1

STL S 40 LD S101 STL S102 SET S 40

LD X2 SET S 50 LD S102 LD X2

SET S100 SET S 50 SET S 40 SET S50

STL S100 SET S 50

LD X3

SET S 50
AND X4
LD X4
SET S60

 Further recommended program change:

S 20

S 21

S 22

S 29

S23

S24

S25

S26

S27

S28

X000

X001

X002

X003

X007

X010

X011

X012

X013

X017

X004

X005

X006

X014

X015

X016

Rewrite
as

S 20

S 21

S 22

S 29

S23

S24

S25

S26

S27

S28

X000
X001

X002

X003

X007

X010

X011

X012

X013

X017

X004

X005

X006

X014

X015

X016

X000 X010

X007 X017

TP03 Serial Programmable Controller STL Program 2

 2-14

Rewrite
as

 STL S20 STL S22

 LD X000 STL S24

 SET S21 LD X006

 SET S23 SET S29

 LD X001 STL S26

 SET S25 STL S28

 SET S27 LD X007

 STL S29

TP03 Serial Programmable Controller STL Program 2

 2-15

2.10 Programming Examples

2.10.1 A Simple STL Flow

Example for sequential start and stop
The motors engage in operation from M1~M4, then stop adversely from M4~M1.
SFC program transfer the states based on single flow.

Such flow can be programmed by selectively activating multiple flows and inactivating them.

The direction of the flow should be from up to bottom. All the flow can not be crossed except
branching line or meeting line.

TP03 Serial Programmable Controller STL Program 2

 2-16

For instance, when X001 in S20 is ON and S32 is activated, the program will directly jump to
S27. It is necessary to add a idle state for the branch should include one or more state.

2.10.2 A Selective Branch/ First State Merge Example Program

The following example depicts an automatic sorting robot. The robot sorts two sizes
of ball bearings from a mixed ‘source pool’ into individual storage buckets
containing only one type of ball bearing.

TP03 Serial Programmable Controller STL Program 2

 2-17

The sequence of physical events (from initial power On) are:
1) The pickup arm is moved to its zero-point when the start button (X12) is pressed.

When the pickup arm reaches the zero-point the zero-point lamp (Y7) is lit.
2) The pickup arm is lowered (Y0) until a ball is collected (Y1). If the lower limit switch (X2)

is made a small ball bearing has been collected; consequently no lower limit switch
signal means a large ball bearing has been collected. Note, a proximity switch (X0)
within the ‘source pool’ identifies the availability of ball bearings.

3) Depending on the collected ball, the pickup arm retracts (output Y2 is operated until X3
is received) and moves to the right (Y3) where it will stop at the limit switch (X4 or X5)
indicating the container required for storage.

4) The program continues by lowering the pickup arm (Y0) until the lower limit switch (X2)
is reached.

5) The collected ball being is released (Y1 is reset).
6) The pickup arm is retracted (Y2) once more.
7) The pickup arm is traversed back (Y4) to the zero-point (X1).

Points to note
• The Selective Branch is used to choose the delivery program for either small ball
bearings or large ball bearings. Once the destination has been reached (i.e. step S24
or S27 has been executed) the two independent program flows are rejoined at step
S30.

• The example program shown works on a single cycle, i.e. every time a ball is to be
retrieved the start button (X12) must be pressed to initiate the cycle. Full STL flow

TP03 Serial Programmable Controller STL Program 2

 2-18

diagram/program.

S0

S21 Y0

T0

S22 S25

T1

Y2S23

S24 Y3

S26

S27

S30 Y0

S31

T2

Y2S32

S33 Y4

X12
Y7

START
Zero-point arrival

K20

LOW PICKUP ARM

T0
X2

T0
X2Low limit=small ball Low limit=large ball

SET Y1

K0

Collect
ball

T1

Y2

Y3

SET Y1

K10

Collect ball

Raise pickup arm

Upper limit reached

T1

X3

X5 Move to large ball bucket

T1

X3

Raise
pickup arm

X4
Upper limit reached

X5
X4 Move to small ball bucket

Lower pickup arm

Lower limit reachedX2

Release ball

K10

Raise pickup arm

Return to zero-point

RST Y1

T2

X3 Upper limit reached

X1
X1 Zero-point reached

This example uses the dot notation to identify
normally open and normally closed contacts.

Normally open contacts
Normally closed contacts

TP03 Serial Programmable Controller STL Program 2

 2-19

2.11 Advanced STL Use

STL programming can be enhanced by using the Initial State Applied Instruction. This
instruction has a mnemonic abbreviation of IST and a special function number of 60.
When the IST instruction is used an automatic assignment of state relays, special
auxiliary relays (M coils) is made. The IST instruction provides the user with a
pre-formatted way of creating a multi-mode program. The modes available are:
a) Automatic:

- Single step
- Single cycle
- Continuous

b) Manual:
- Operator controlled
- Zero return

TP03 Serial Programmable Controller Devices in Detail 3

 3-1

3 Devices in Detail ... 3
3.1 Inputs ... 3
3.2 Outputs... 3
3.3 Auxiliary Relays .. 4

3.3.1 General Stable State Auxiliary Relays ... 4
3.3.2 Battery Backed/ Latched Auxiliary Relays.. 4
3.3.3 Special Diagnostic Auxiliary Relays ... 5
3.3.4 Special Single Operation Pulse Relays .. 5

3.4 State Relays ... 6
3.4.1 General Stable State - State Relays.. 6
3.4.2 Battery Backed/ Latched State Relays ... 6
3.4.3 STL Step Relays .. 7
3.4.4 Annunciator Flags.. 7

3.5 Pointers .. 9
3.6 Interrupt Pointers ... 10

3.6.1 Input Interrupts .. 10
3.6.2 Timer Interrupts ..11
3.6.3 Disabling Individual Interrupts ...11
3.6.4 Counter Interrupts ...11

3.7 Constant K ... 12
3.8 Constant H ... 12
3.9 Timers .. 13

3.9.1 General timer operation ... 13
3.9.2 Selectable Timers... 14
3.9.3 Retentive Timers .. 14
3.9.4 Timers Used in Interrupt and ‘CALL’ Subroutines.. 14
3.9.5 Timer Accuracy.. 14

3.10 Counters... 16
3.10.1 General/ Latched 16bit UP Counters ... 16
3.10.2 General/ Latched 32bit Bi-directional Counters .. 17

3.11 High Speed Counters ... 18
3.11.1 Basic High Speed Counter Operation .. 18

3.12 Data Registers.. 19
3.12.1 General Use Registers.. 19
3.12.2 Special Diagnostic Registers.. 20
3.12.3 Externally Adjusted Registers.. 21

3.13 Index Registers .. 21
3.13.1 Modifying a Constant .. 22
3.13.2 Misuse of the Modifiers... 23
3.13.3 Using Multiple Index Registers ... 23

3.14 Bits, Words, BCD and Hexadecimal.. 23
3.14.1 Bit Devices, Individual and Grouped... 24
3.14.2 Word Devices... 25
3.14.3 Interpreting Word Data .. 25

TP03 Serial Programmable Controller Devices in Detail 3

 3-2

3.14.4 Two’s Compliment... 27
3.15 Floating Point And Scientific Notation.. 28

3.15.1 Scientific Notation ... 29
3.15.2 Floating Point Format .. 30

TP03 Serial Programmable Controller Devices in Detail 3

 3-3

3 Devices in Detail

3.1 Inputs

Device Mnemonic: X
Purpose: Representation of physical inputs to the programmable controller (PLC)
Alias: I/P

Inp
(X) Input
Input contact

Available forms: NO (○1) and NC (○2) contacts only

Devices numbered in: Octal, i.e. X0 to X7, X10 to X17
Further uses: None
Available devices:

 Please see the information point on 3.2, Outputs. Alternatively refer to the relevant
tables for the selected PLC in chapter 7.

3.2 Outputs

Device Mnemonic: Y
Purpose: Representation of physical outputs from the programmable controller
lias: O/P

Otp
Out (Y)
Output (Y)
Output (coil/ relay/ contact)

Available forms: NO (○1) and NC contacts and output coils (○2)

Devices numbered in: Octal, i.e. Y0 to Y7, Y10 to Y17
Further uses: None
Available devices:

PLC

Inputs/outputs
20 points 30 points 40 points 60 points Max

X (X000~X267
184 points)

X000~X013
12 points

X000~X017
16 points

X000~X027
24 points

X000~X043
36 points

X000~X177
128 points

Y(Y000~Y267
184 points)

Y000~Y007
8 points

Y000~Y005
14 points

Y000~Y017
16 points

Y000~Y027
24 points

Y000~Y177
128 points

 For more information about the device availability for individual PLC’s, please see
chapter 7.

X0
Y10

X1

1 2

1

2

X0
Y10

X1

Y10

TP03 Serial Programmable Controller Devices in Detail 3

 3-4

3.3 Auxiliary Relays

Device Mnemonic: M
Purpose: Internal programmable controller status flag
Alias: Auxiliary (coil/ relay/ contact/ flag)

M (coil/ relay/ contact /flag)
M (bit) device

Available forms: NO (○1) and NC contacts and output coils (○2)

Devices numbered in: Decimal, i.e. M0 to M9, M10 to M19
Further uses: General stable state auxiliary relays - see 3.3.1

Battery backed/ latched auxiliary relays - see 3.3.2
Special diagnostic auxiliary relays - see 3.3.3

3.3.1 General Stable State Auxiliary Relays
 A number of auxiliary relays are used in the PLC. The coils of these relays are driven by

device contacts in the PLC in the same manner that the output relays are driven in the
program.
All auxiliary relays have a number of electronic NO and NC contacts which can be used
by the PLC as required. Note that these contacts cannot directly drive an external load.
Only output relays can be used to do this.

General auxiliary
relay※1

Battery backed
/latched relay※2

Battery backed
/latched relay※3

Special auxiliary
relay

M M0~M499
500 points

M500~M1023
524 points

M1024~M7679
6656 points

M8000~M8511
512 points

※1: Non-retentive. However, the retentive-device range can be modified through PC-LINK
parameter setting.

※2: Retentive. However, the retentive-device range can be modified through PC-LINK
parameter setting.

※3: Retentive range is fixed, that is it can not be modified through PC-LINK.
For more information about device availability for individual PLC’s, please see chapter 7.

3.3.2 Battery Backed/ Latched Auxiliary Relays

There are a number of battery backed or latched relays whose status is retained in
battery backed or EEPROM memory. If a power failure should occur all output and
general purpose relays are switched off. When
operation is resumed the previous status of these
relays is restored. The example shows a self
retaining circuit. Relay M507 is activated when X0
is turned ON. If X0 is turned OFF after the
activation of M507, the ON status of M507 is self
retained, i.e. the NO contact M507 drives the coil M507.
However, M507 is reset (turned OFF) when the input X1 is turned ON, i.e. the NC
contact is broken.

1

2

X0
M507

X1

M507

TP03 Serial Programmable Controller Devices in Detail 3

 3-5

A SET and RST (reset) instruction can be used to retain the status of a relay being
activated momentarily.
External loads:

 Auxiliary relays are provided with countless number of NO contact points and NC
contact points. These are freely available for use through out a PLC program. These
contacts cannot be used to directly drive external loads. All external loads should be
driven through the use of direct (Y) outputs.

3.3.3 Special Diagnostic Auxiliary Relays

A PLC has a number of special auxiliary relays. These relays all have specific
functions and are classified into the following two types.
a) Using contacts of special auxiliary relays

- Coils are driven automatically by the PLC. Only the contacts of these coils may be
used by a user defined program.
Examples: M8000: RUN monitor (ON during run)

M8002: Initial pulse (Turned ON momentarily when PLC starts)
M8012: 100 msec clock pulse

b) Driving coils of special auxiliary relays
- A PLC executes a predetermined specific operation when these coils are driven
by the user.
Examples: M8033: All output statuses are retained when PLC operation is stopped

M8034: All outputs are disabled
M8039: The PLC operates under constant scan mode

Available devices:
 Not all PLC’s share the same range, quantity or operational meaning of diagnostic

auxiliary relays. Please check the availability and function before using any device.

3.3.4 Special Single Operation Pulse Relays
When used with the pulse contacts LDP, LDF, etc., M devices in the range M2800 to
M3072 have a special meaning. With these devices, only the next pulse contact
instruction after the device coil is activated.

.

TP03 Serial Programmable Controller Devices in Detail 3

 3-6

3.4 State Relays

Device Mnemonic: S
Purpose: Internal programmable controller status flag
Alias: State (coil/ relay/ contact/ flag)

S (coil/ relay/ contact /flag)
STL step (coil/ relay/ contact /flag)
Annunciator flag

Available forms: NO (○1) and NC contacts and output coils (○2)

Devices numbered in: Decimal, i.e. S0 to S9, S10 to S19
Further uses: General stable state - state relays - see 3.4.1

Battery backed/ latched state relays - see 3.4.2
STL step relays - see 3.4.3
Annunciator flags - see 3.4.4

3.4.1 General Stable State - State Relays
A number of state relays are used in the PLC. The coils of these relays are driven by
device contacts in the PLC in the same manner that the output relays are driven in the
program. All state relays have a number of electronic NO and NC contacts which can
be used by the PLC as required. Note that these contacts cannot directly drive an
external load. Only output relays can be used to do this.
Available devices:

 Please see the information point 3.4.2 ‘Battery backed/ latched state relays’, or
see the relevant tables for the selected PLC in chapter 7

3.4.2 Battery Backed/ Latched State Relays
There are a number of battery backed or latched relays whose status is retained in
battery backed or EEPROM memory. If a power failure should occur all output and
general purpose relays are switched off. When operation is resumed the previous
status of these relays is restored.
Available devices:
General state
relay※1

Initial state
relay

For zero-
return of
ITS

Battery
backed/latched
relay※2

Annunciator
relay※2

S0~S499
500 points

S0~S9
10 points

S10~S19
10 points

S500 ~ S4095
3596 points

S900 ~ S999
100 points

※1: Non-retentive. However, the retentive-device range can be modified through
PC-LINK parameter setting.

※2: Retentive. However, the retentive-device range can be modified through PC-LINK
parameter setting.

 For more information about device availability for individual PLC’s, see chapter 7.
External loads:

 State relays are provided with countless number of NO contact points and NC

1

2

X0 X1

S20

S20

TP03 Serial Programmable Controller Devices in Detail 3

 3-7

contact points, and are freely available for use through out a PLC program. These
contacts cannot be used to directly drive external loads. All external loads should be
driven through the use of direct (ex. Y) outputs.

3.4.3 STL Step Relays
States (S) are very important devices when
programming step by step process control. They are
used in combination with the basic instruction STL.
When all STL style programming is used certain states
have a pre-defined operation. The step identified as ○1
in the figure opposite is called an ‘initial state’. All other
state steps are then used to build up the full STL
function plan. It should be remembered that even
though remaining state steps are used in an STL
format, they still retain their general or latched
operation status. The range of available devices is as
specified in the information point of the previous section.

Assigned states:

 When the applied instruction IST (Initial state function 60) is used, the following
state devices are automatically assigned operations which cannot be changed directly
by a users program:
S0 : Manual operation initial state
S1 : Zero return initial state
S2 : Automatic operation initial state
S10 to S19 : Allocated for the creation of the zero return program sequence

Monitoring STL programs:

 To monitor the dynamic-active states within an STL program, special auxiliary
relay M8047 must be driven ON.
STL/SFC programming:

 For more information on STL/SFC style programming, please see chapter 2.
IST instruction:

 For more information on the IST instruction please see 4.7.1

3.4.4 Annunciator Flags
Some state flags can be used as outputs for external diagnosis (called annunciation)
when certain applied instructions are used. These instructions are;
ANS function 46: Annunciator Set - see 4.5.7
ANR function 47: Annunciator Reset - see 4.5.8
When the annunciator function is used the controlled state flags are in the range S900
to S999 (100 points). By programming an external diagnosis circuit as shown below,
and monitoring special data register D8049, the lowest activated state from the
annunciator range will be displayed.

1S2

S20

S21

S22

Y0

Y1

Y2

X0

X1

X2

X3

TP03 Serial Programmable Controller Devices in Detail 3

 3-8

Each of the states can be assigned to signify an error or fault condition. As a fault
occurs the associated state is driven ON. If more than one fault occurs simultaneously,
the lowest fault number will be displayed. When the active fault is cleared the next
lowest fault will then be processed.
This means that for a correctly
prioritized diagnostic system the most
dangerous or damaging faults should
activate the lowest state flags, from the
annunciator range. All state flags used
for the annunciator function fall in the
range of battery backed/ latched state
registers.
Monitoring is enabled by driving special
auxiliary relay M8049 ON.
State S900 is activated if input X0 is not
driven within one second after the
output Y0 has been turned ON.
State S901 is activated when both
inputs X1 and X2 are OFF for more than
two seconds. If the cycle time of the
controlled machine is less than ten
seconds, and input X3 stays ON, state
S902 will be set ON if X4 is not activated within this machine cycle time.
If any state from S900 to S999 is activated, i.e. ON, special auxiliary relay M8048 is
activated to turn on failure indicator output Y10.
The states activated by the users error / Failure diagnosis detection program, are
turned OFF by activating input X5. Each time X5 is activated, the active annunciator
states are reset in ascending order of state numbers

F46 ANS T 0 K 10 S900

F46 ANS T 1 K 20 S901

F46 ANS T 2 K100 S902

M8049

Y10

F47 ANR P

M8000

Y0 X0

X1 X2

X3 X4

M8048

X5

TP03 Serial Programmable Controller Devices in Detail 3

 3-9

3.5 Pointers

Device Mnemonic: P
Purpose: Program flow control

Alias: Pointer
Program pointer : P

Available forms: Label: appears on the left of the left hand bus bar when the program is
viewed in ladder mode.

Devices numbered in: Decimal, i.e. P0 to P9, P10 to P19
Further uses: Can be used with conditional jump statements (CJ function 00)

- see 4.1.1 and item ○1 on the example device usage diagram.
Can be used with call statements
- see 4.1.2 and item ○2 on the example device usage diagram

Example device usage:

Available devices:

 PLC has 256 pointers; available from the range of P0 to P255.
Jumping to the end of the program:

 When using conditional jump instructions (CJ, function 00) the program end can be
jumped to automatically by using the pointer P63 within the CJ instruction. Labeling the
END instruction with P63 is not required.

Device availability:
 For more information about device availability for individual PLC’s, please see chapter 7.

TP03 Serial Programmable Controller Devices in Detail 3

 3-10

3.6 Interrupt Pointers

Device Mnemonic: I
Purpose: Interrupt program marker
Alias: Interrupt

High speed interrupt: I
Available forms: Label: appears on the left of the left hand bus bar when the program is

viewed in ladder mode
Devices numbered in: Special numbering system based on interrupt device used and input

triggering method
Further uses: Input interrupts - see 3.6.1

Timer interrupts - see 3.6.2
Disabling interrupts - see 3.6.3
Counter interrupts - see 3.6.4

Example device usage:

I101

FEND

IRET
1

END

Additional applied instructions:
 Interrupts are made up of an interrupt device, an interrupt pointer and various usage of

three, dedicated interrupt applied instructions;
- IRET function 03: interrupt return - see 4.1.4
- EI function 04: enable interrupt - see 4.1.4
- DI function 05: disable interrupt - see 4.1.4

Nested levels:
 While an interrupt is processing all other interrupts are disabled. To achieve nested

interrupts the EI-DI instruction must be programmed within an interrupt routine.
Interrupts can be nested for two levels.

Pointer position:
 Interrupt pointers may only be used after an FEND instruction (first end instruction,

function 06).

3.6.1 Input Interrupts
Identification of interrupt pointer number:
I □ 0 □

0; interrupt triggered on trailing/falling edge of input signal
1: interrupt triggered on leading/rising edge of input signal

Input number; each input number can only be used once.
Have 6 points (0 to 5 which map x0 to x5)

TP03 Serial Programmable Controller Devices in Detail 3

 3-11

Example: I001
The sequence programmed after the label (indicated by the I001 pointer) is executed on
the leading or rising edge of the input signal X0. The program sequence returns from the
interruption program when an IRET instruction is encountered.
Rules of use:

 The following points must be followed for an interrupt to operate;
- Interrupt pointers cannot have the same number in the ‘100’s’ position, i.e. I100 and
I101 are not allowed.
- The input used for the interrupt device must not coincide with inputs already allocated
for use by other high speed instructions within the user program.

3.6.2 Timer Interrupts
Identification of interrupt pointer number:

I □ □ □

Example: I610
The sequence programmed after the label (indicated by the I610 pointer) is executed at
intervals of 10msec. The program sequence returns from the interruption program when an
IRET instruction is encountered.
Rules of use:

 The following points must be followed for an interrupt to operate;
- Interrupt pointers cannot have the same number in the ‘100’s’ position, i.e. I610 and

I650 are not allowed.

3.6.3 Disabling Individual Interrupts
Individual interrupt devices can be temporarily or permanently disabled by driving an
associated special auxiliary relay. The relevant coils are identified in the tables of devices
in chapter 5. However for all PLC types the head address is M8050, this will disable
interrupt I0□□
Driving special auxiliary relays:

 Never drive a special auxiliary coil without first checking its use. Not all PLC’s assign
the same use to the same auxiliary coils.

Disabling high speed counter interrupts
 These interrupts can only be disabled as a single group by driving M8059 ON. Further

details about counter interrupts can be found in the following section.
3.6.4 Counter Interrupts

Identification of interrupt pointer number:
I 0 □ 0

10 to 99 msec: the interrupt is repeatedly triggered at
intervals of the specified time.

Timer interrupt number 3 points (6 to 8)

Counter interrupt number 6 points (1 to 6).Counter interrupts
can be entered as the output devices for High Speed
Counters Set (HSCS, FNC53). To disable the Counter
Interrupts Special Auxiliary Relay M8059 must be set ON.

TP03 Serial Programmable Controller Devices in Detail 3

 3-12

Example:
The sequence programmed after the label
(indicated by the I030 pointer) is executed
once the value of High Speed Counter C255
reaches/equals the preset limit of K100 identified in the example HSCS.
Additional notes:

 Please see the following pages for more details on the HSSC applied instruction.
- High Speed Counter Set, HSCS FNC 53 - see 4.6.4

3.7 Constant K

Device Mnemonic: K
Purpose: Identification of constant decimal values
Alias: Constant

K (value/ constant)
K

Available forms: Numeric data value, when used for 16bit data, values can be selected from
the range -32,768 to +32,767.For 32bit data, values from the range
-2,147,483,648 to + 2,147,483,647 can be used.

Devices numbered in: N/A. This device is a method of local instruction data entry.
There is no limit to the number of times it can be used.

Further uses: K values can be used with timers, counters and applied instructions
Example device usage: N/A

3.8 Constant H

Device Mnemonic: H
Purpose: Identification of constant hexadecimal values
Alias: Constant

H (value/ constant)
Hex (value/ constant)
H

Available forms: Alpha-numeric data value, i.e. 0 to 9 and A to F (base 16). When used for
16bit data, values can be selected from the range 0 to FFFF.For 32bit data,
values from the range 0 to FFFFFFFF can be used.

Devices numbered in: N/A. This device is a method of local instruction data entry.
There is no limit to the number of times it can be used.

Further uses: Hex values can be used with applied instructions
Example device usage: N/A

TP03 Serial Programmable Controller Devices in Detail 3

 3-13

3.9 Timers

Device Mnemonic: T
Purpose: Timed durations
Alias: Timer(s)

T
Available forms: A driven coil sets internal PLC contacts (NO and NC contacts available).

Various timer resolutions are possible, from 1 to 100 msec, but availability and quantity
vary from PLC to PLC. The following variations are also available:
Selectable timer resolutions - see 3.9.2
Retentive timers - see 3.9.3
Timers used in interrupt and ‘CALL’ subroutines - see 3.9.4

Devices numbered in: Decimal, i.e T0 to T9, T10 to T19.
Further uses: None
Example device usage:

Available devices:

Timer accuracy:

 See 3.9.5

3.9.1 General timer operation
Timers operate by counting clock pulses (1, 10 and 100 msec). The timer output
contact is activated when the count data reaches the value set by the constant K. The
overall duration or elapsed time, for a timers operation cycle, is calculated by
multiplying the present value by the timer resolution, i.e.
A 10 msec timer with a present value of 567 has actually been operating for:

567× 10 msec
567× 0.01 sec = 5.67 seconds

Timers can either be set directly by using the constant K to specify the maximum
duration or indirectly by using the data stored in a data register (ex. D). For the indirect
setting, data registers which are battery backed/ latched are usually used; this ensures
no loss of data during power down situations. If however, the voltage of the battery
used to perform the battery backed service, reduces excessively, timer malfunctions
may occur.

function
100ms type
0.1~3276.7s

10ms type
0.01~327.67s

1ms
accumulating
type
0.001~32.767s

100ms
accumulating
type
0.1~3276.7s

1 ms type
Potentiometer
0~1024

general T0~T199
For
sub-routine

T192~T199
T200~T245 T246~T249 T250~T255 T256~T511 2 point

TP03 Serial Programmable Controller Devices in Detail 3

 3-14

3.9.2 Selectable Timers
On certain programmable controllers, driving a special auxiliary coil redefines
approximately half of the 100 msec timers as 10 msec resolution timers. The following
PLC’s and timers are subject to this type of selection.

3.9.3 Retentive Timers
A retentive timer has the ability to retain the currently reached present value even after
the drive contact has been removed. This means that when the drive contact is
re-established a retentive timer will continue from where it last reached.
Because the retentive timer is not reset when the drive contact is removed, a forced
reset must be used. The following diagram shows this in a graphical format.

Using timers in interrupt or ‘CALL’ subroutines:

 Please see 3.9.4

3.9.4 Timers Used in Interrupt and ‘CALL’ Subroutines
If timers T192 to T199 and T246 to T249 are used in a CALL subroutine or an
interruption routine, the timing action is updated at the point when an END instruction
is executed. The output contact is activated when a coil instruction or an END
instruction is processed once the timers current value has reached the preset
(maximum duration) value.
Timers other than those specified above cannot function correctly within the specified
circumstances.
When an interrupt timer (1 msec resolution) is used in an interrupt routine or within a
‘CALL’ subroutine, the output contact is activated when the first coil instruction of that
timer is executed after the timer has reached its preset (maximum duration) value.

3.9.5 Timer Accuracy

X001
T250

T250
K345

Y001

Retentive timer operation

RST T250
X002

TP03 Serial Programmable Controller Devices in Detail 3

 3-15

Timer accuracy can be affected by the program configuration. That is to say, if a timer
contact is used before its associated coil, then the timer accuracy is reduced.
The following formulas give maximum and minimum errors for certain situations.
However, an average expected error would be approximately;

1.5 × The program scan time
Condition 1:
The timer contact appears after the timer coil.

Maximum timing error:

2 × Scan time + The input filter time
Minimum timing error:

Input filter time - The timer resolution
Condition 2:
The timer contact appears before the timer coil.

Maximum timing error:

3 × Scan time + The input filter time
Minimum timing error:

Input filter time- The timer resolution
Internal timer accuracy:

 The actual accuracy of the timing elements within the PLC hardware is;
± 10 pulses per million pulses. This means that if a 100 msec timer is used to time a
single day, at the end of that day the timer will be within 0.8 seconds of the true 24
hours or 86,400 seconds. The timer would have processed approximately 864,000;
100 msec

TP03 Serial Programmable Controller Devices in Detail 3

 3-16

3.10 Counters

Device Mnemonic: C
Purpose: Event driven delays
Alias: Counter(s)

C
Available forms: A driven coil sets internal PLC contacts (NO and NC contacts available).

Various counter resolutions are possible including;
General/latched 16bit up counters - see 3.10.1
General/latched 32bit bi-directional counters – see 3.10.2
(The availability and use of all these counters is PLC specific – please
check availability before use)

Devices numbered in: Decimal, i.e C0 to C9, C10 to C19
Further uses: None
Example device usage:

Available devices:

General 16bit up counter
0~32,767

Lateched 16bit up counter
0~32,767

Lateched 32bit up counter
-2,147,483,648~+2,147,483,647

C0~C099 C100~C199 C200-C255

High speed counters:

 For high speed counters please see 3.11
Setting ranges for counters:

 16bit counters: -32,768 to +32,767
 32bit counters: -2,147,483,648 to +2,147,483,647

3.10.1 General/ Latched 16bit UP Counters

The current value of the counter increases each time
coil C0 is turned ON by X011. The output contact is
activated when the coil is turned ON for the tenth time
(see diagram). After this, the counter data remains
Unchanged when X011 is turned ON. The counter
current value is reset to ‘0’ (zero) when the RST
instruction is executed by turning ON X010
in the example. The output contact Y000 is
also reset at the same time. Counters can
be set directly using constant K or indirectly
by using data stored in a data register (ex.
D). In an indirect setting, the designation of
D10 for example, which contains the value
“123” has the same effect as a setting of
“K123”. If a value greater than the counter
setting is written to a current value register, the counter counts up when the next input

TP03 Serial Programmable Controller Devices in Detail 3

 3-17

is turned ON. This is true for all types of counters. Generally, the count input frequency
should be around several cycles per second.

Battery backed/latched counters:

 Counters which are battery backed/ latched are able to retain their status
information, even after the PLC has been powered down. This means on re-powering
up, the latched counters can immediately resume from where they were at the time of
the original PLC power down.

3.10.2 General/ Latched 32bit Bi-directional Counters
The counter shown in the example below, activates
when its coil is driven, i.e. the C200 coil is driven. On
every occasion the input X014 is turned from OFF to
ON the current value or current count of C200 is
incremented.

The output coil of C200 is set ON when the current value increases from “-6” to “-5”.
However, if the counters value decreases from “-5” to “-6” the counter coil will reset.
The counters current value increases or decreases independently of the output
contact state (ON/OFF). Yet, if a counter counts beyond +2,147,483,647 the current
value will automatically change to -2,147,483,648. Similarly, counting below
-2,147,483,648 will result in the current value changing to +2,147,483,647. This type of
counting technique is typical for “ring counters”. The current value of the active counter
can be rest to "0" (zero) by forcibly resetting the counter coil; in the example program
by switching the input X013 ON which drives the RST instruction. The counting
direction is designated with special auxiliary relays M8200 to M8234.
Battery backed/ latched counters:

 Counters which are battery backed/ latched are able to retain their status

TP03 Serial Programmable Controller Devices in Detail 3

 3-18

information, even after the PLC has been powered down. This means on re-powering
up, the latched counters can immediately resume from where they were at the time of
the original PLC power down.
Selecting the counting direction:

 If M8□□□ for C□□□is turned ON, the counter will be a down counter.
Conversely, the counter is an up counter when M8□□□is OFF.

3.11 High Speed Counters

Device Mnemonic: C
Purpose: High speed event driven delays
Alias: Counter (s)

C
High speed counter (s)
Phase counters

Available forms: A driven coil sets internal PLC contacts (NO and NC contacts available).
There are various types of high speed counter available but the quantity
and function vary from PLC to PLC.

Devices numbered in: Decimal, i.e C0 to C235 to C255
Further uses: None
Example device usage: For examples on each of the available forms please see the relevant

sections.

3.11.1 Basic High Speed Counter Operation
Although counters C235 to C255 (21 points) are all high speed counters, they share
the same range of high speed inputs. Therefore, if an input is already being used by a
high speed counter, it cannot be used for any other high speed counters or for any
other purpose, i.e. as an interrupt input.
The selection of high speed counters are not free, they are directly dependent on the
type of counter required and which inputs are available.
Available counter types;
a) 1 phase: C235 to C245
b) 1 phase bi-directional: C246 to C249
c) 2 phase bi-directional: C251 to C254
Please note ALL of these counters are 32bit devices.
High speed counters operate by the principle of interrupts. This means they are event
triggered and independent of cycle time. The coil of the selected counter should be
driven continuously to indicate that this counter and its associated inputs are reserved
and that other high speed processes must not coincide with them.
Example:
When X020 is ON, high speed counter C235 is
selected. The counter C235 corresponds to count
input X000. X020 is NOT the counted signal. This
is the continuous drive mentioned earlier. X000

X020
C235

K4789
X020

C236
D4

TP03 Serial Programmable Controller Devices in Detail 3

 3-19

does not have to be included in the program. The input assignment is hardware
related and cannot be changed by the user.
When X020 is OFF, coil C235 is turned OFF and coil C236 is turned ON. Counter
C236 has an assigned input of X001; again the input X020 is NOT the counted input.
The assignment of counters and input devices is dependent upon the PLC selected.
This is explained in the relevant, later sections.

Driving high speed counter coils:

 The counted inputs are NOT used to
drive the high speed counter coils.
This is because the counter coils need to
be continuously driven ON to reserve the
associated high speed inputs.
Therefore, a normal non-high speed drive
contact should be used to drive the high
speed counter coil. Ideally the special auxiliary contact M8000 should be used.
However, this is not compulsory.

3.12 Data Registers

Device Mnemonic: D
Purpose: A storage device capable of storing numeric data or 16/32bit patterns
Alias: Data (register/ device/ word)

D (register)
D
Word

Available forms: General use registers
Battery backed/latched registers
Special diagnostic registers
File registers

Devices numbered in: Decimal, i.e. D0 to D9, D10 to D19
Further uses: Can be used in the indirect setting of counters and timers
Example device usage: None
Available devices:

General use registers Latched registers File registers R Special diagnostic
registers

D0~D199
200 points

D200~D511
312 points

D512 ~ D7999
7488 points

D8000~D8511
512 points

R - These devices are allocated by the user at the expense of available program steps.
3.12.1 General Use Registers

Data registers, as the name suggests, store data. The stored data can be interpreted
as a numerical value or as a series of bits, being either ON or OFF.
A single data register contains 16bits or one word. However, two consecutive data
registers can be used to form a 32bit device more commonly known as a double word.

X000
C235

K4789

C236
D4

X001

TP03 Serial Programmable Controller Devices in Detail 3

 3-20

If the contents of the data register is being considered numerically then the Most
Significant Bit (MSB) is used to indicate if the data has a positive or negative bias. As
bit devices can only be ON or OFF, 1 or 0 the MSB convention used is, 0 is equal to a
positive number and 1 is equal to a negative number.

The diagram above shows both single and double register configurations. In the
diagram identified, it should be noted that the ‘lower’ register D0 no longer has a ‘Most
Significant Bit’. This is because it is now being considered as part of a 32bit-double
word. The MSB will always be found in the higher 16 bits, i.e. in this case D1. When
specifying a 32 bit data register within a program instruction, the lower device is
always used e.g. if the above example was to be written as a 32bit instructional
operand it would be identified as D0. The second register, D1, would automatically be
associated.
Once the data is written to a general data register, it remains unchanged until it is
overwritten. When the PLC is turned from RUN to STOP, all of the general data
registers have their current contents overwritten with a 0 (zero).
Data retention:

 Data can be retained in the general use registers when the PLC is switched from
RUN to STOP if special auxiliary relay M8033 is ON.
Data register updates:

 Writing a new data value to a data register will result in the data register being
updated with the new data value at the end of the current program scan.

3.12.2 Special Diagnostic Registers

Special registers are used to control or monitor various modes or devices inside the
PLC. Data written in these registers are set to the default values when the power
supply to the PLC is turned ON.

- Note: When the power is turned ON, all registers are first cleared to 0 (zero) and
then the default values are automatically written to the appropriate registers by the
system software. For example, the watchdog timer data is written to D8000 by the
system software. To change the setting, the user must write the required value
over what is currently stored in D8000.

Data stored in the special diagnostic registers will remain unchanged when the PLC is
switched from STOP mode into RUN.

TP03 Serial Programmable Controller Devices in Detail 3

 3-21

Use of diagnostic registers:
 On no account should unidentified devices be used. If a device is used, it should

only be for the purpose identified in this manual. Please see chapter 5 for tables
containing data and descriptions of the available devices for each PLC.

3.12.3 Externally Adjusted Registers

The PLC has built in “setting pots” which
are used to adjust the contents of certain
dedicated data registers. The contents of
these registers can range from 0 to 1023.
This is a built in feature and requires no
additional setup or programming.
And an additional special function unit is
also available which provides the same
function. To use this unit requires the
applied instructions VRRD function 85 (Volume Read) and VRSC function 86 (Volume
Scale).

Number of setting pots 2 points: Supplied by using basic unit

6 points: Supplied by using the additional special
function block.

Number of controlled data registers Selected by the user when applied instructions
VRRD and VRSC are used

Uses:

 This facility is often used to vary timer settings, but it can be used in any
application where a data register is normally found, i.e. setting counters, supplying raw
data, even selection operations could be carried out using this option.

3.13 Index Registers

Device Mnemonic: V,Z

Setting
pot

TP03 Serial Programmable Controller Devices in Detail 3

 3-22

Purpose: To modify a specified device by stating an offset.
Alias: (V/ Z) Register

Index (register/ addressing/ modifier)
Offset(s) (register/ addressing/ modifier)
Indices
Modifier

Available forms:
For 16bit data V or Z
(2 devices)
For 32bit data V and Z combined
(1 device - Z is specified)
Operation is similar to data registers.

Devices numbered in: N/A. there are 32 devices V0 – V15 and Z0 – Z15
Further uses: Can be used to modify the following devices under certain conditions;

X, Y, M, S, P, T, C, D, K, H, KnX, KnY, KnM, KnS
Example device usage:
The program shown right transfers data from D5V to D10Z.
If the data contained in register V is equal to 8 and the data in register Z is equal to 14, then:

V = 8
D5V
D5 +8 =13 Ì D13
Z = 14
D10Z
D10 + 14 = 24 Ì D24

Hence, the actual devices used after the modifiers V and Z have been taken into account
are;D13 and D24 and not D5 and D10 respectively.

Use of Modifiers with Applied Instruction Parameters:

 All applied instruction parameters should be regarded as being able to use index

registers to modify the operand except where stated otherwise.

3.13.1 Modifying a Constant
Constants can be modified just as easily as data registers or bit devices. If, for
example, the constant K20 was actually written K20V the final result would equal:
K20 + the contents of V
Example:

TP03 Serial Programmable Controller Devices in Detail 3

 3-23

3.13.2 Misuse of the Modifiers
Modifying Kn devices when Kn forms part of a device description such as KnY is not
possible, i.e. while the following use of modifiers is permitted;

K3Z
K1M10V
Y20Z

Statements of the form:
K4ZY30

are not acceptable.
 Modifiers cannot be used for parameters entered into any of the 20 basic

instructions, i.e. LD, AND, OR etc.

3.13.3 Using Multiple Index Registers
The use of multiple index registers is sometimes necessary in larger programs or
programs which handle large quantities of data. There is no problem from the PLC’s
point of view in using both V and Z registers
many times through out a program. The
point to be aware of is that it is sometimes
confusing for the user or a maintenance
person reading such programs, as it is not
always clear what the current value of V or Z
is.
Example:
V = 10 (K10)
Z = 20 (K20)
D5V = D15 (D5 + V = D5 + 10 = D15)
D15Z = D35 (D15 + Z = D15 + 20 = D35)
D40Z = D60 (D40 + Z = D40 + 20 = D60)
Both V and Z registers are initially set to K10 and K20 respectively.
The content of D15 is added to that of D35 and store in D60.
V is then reset to 0 (zero) and both V and Z are used in the double word addition
(DADD).
The contents of D1, D0 are then added to D3, D2 and then finally stored in D25, D24.

3.14 Bits, Words, BCD and Hexadecimal

The following section details general topics relating to good device understanding. The
section is split into several smaller parts with each covering one topic or small group of
topics.
Available devices:

MOV K10 V
X000

MOV K20 Z
X001

ADD D 5V D 15Z D 40Z
X002

MOV K0 V
M8000

DADD D0 D2 D 4Z
X003

TP03 Serial Programmable Controller Devices in Detail 3

 3-24

• For PLC specific available devices please see chapter 7.

3.14.1 Bit Devices, Individual and Grouped
Devices such as X, Y, M and S are bit devices. Bit devices are bi-stable, this means
there are only two states, ON and OFF or 1 and 0. Bit devices can be grouped
together to form bigger representations of data, for example 8 consecutive bit devices
are some-times referred to as a byte. Further more, 16 consecutive bit devices are
referred to as a word and 32 consecutive bit devices are a double word.
The PLC identifies groups of bit devices which should be regarded as a single entity by
looking for a range marker followed by a head address. This is of the form KnP where
P represents the head address of the bit devices to be used. The Kn portion of the
statement identifies the range of devices enclosed. “n” can be a number from the
range 0 to 8. Each “n” digit actual represents 4 bit devices, i.e K1 = 4 bit devices and
K8 = 32 bit devices. Hence all groups of bit devices are divisible by 4.
Assigning grouped bit devices:
As already explained, bit devices can be grouped into 4 bit units. The “n” in KnM0
defines the number of groups of 4 bits to be combined for data operation. K1 to K4 are
allowed for 16bit data operations but K1 to K8 are valid for 32bit operations.
K2M0, for example identifies 2 groups of 4 bits; M0 to M3 and M4 to M7, giving a total
of 8 bit devices or 1 byte. The diagram below identifies more examples of Kn□ use.

K1X0 : X0 to X3 → 4 bit devices with a head address of X0
K1X6 : X6 to X11 → 4 bit devices with a head address of X6
K3X0 : X0 to X13 → 12 bit devices with a head address of X0
K8X0 : X0 to X37 → 32 bit devices with a head address of X0
Moving grouped bit devices:

 If a data move involves taking source data and moving it into a destination which is
smaller than the original source, then the overflowing source data is ignored. For
example; If K3M20 is moved to K1M0 then only M20 to M23 or K1M20 is actually
moved. The remaining data K2M24 or M24 to M31 is ignored.
Assigning I/O:

 Any value taken from the available range of devices can be used for the head

address ‘marker’ of a bit device group. However, it is recommended to use a 0 (zero)

in the lowest digit place of X and Y devices (X0, X10, X20.....etc). For M and S devices,

use of a multiple of “8” is the most device efficient. However, because the use of such

numbers may lead to confusion in assigning device numbers, it recommended to use a

TP03 Serial Programmable Controller Devices in Detail 3

 3-25

multiple of “10”. This will allow good correlation to X and Y devices.

3.14.2 Word Devices
Word devices such as T, C, D, V and Z can store data about a particular event or
action within the PLC. For the most part these devices are 16 bit registers. However,
certain variations do have 32 bit capabilities, as can pairs of consecutive data registers
or combined V and Z registers.
It may seem strange to quote the size of a word device in bits. This is not so strange
when it is considered that the bit is the smallest unit of data within the PLC. So by
identifying every thing in bit format a common denomination is being used, hence
comparison etc is much easier.
Additional consequences of this bit interpretation is that the actual data can be
interpreted differently. The physical pattern of the active bits may be the important
feature or perhaps the numerical interpretation of the bit pattern may be the key to the
program. It all comes down to how the information is read.

3.14.3 Interpreting Word Data
As word data can be read in many ways the significance of certain parts of the word data
can change. PLC’s can read the word data as:

- A pure bit pattern
- A decimal number
- A hexadecimal number
- Or as a BCD (Binary Coded Decimal) number

The following examples will show how the same piece of data can become many different
things depending wholly on the way the information is read or interpreted.

a) Considering a bit pattern
The following bit pattern means nothing - it is simply 16 devices which have two states.
Some of the devices are randomly set to one of the states. However, if the header
notation (base 2) is added to the 16 bit data the sum, decimal, total of the active bits
can be calculated, e.g.,

Decimal value = (20 x 1) + (22 x 1) + (24 x 1) + (25 x 1) + (26 x 1) + (29 x 1) + (210

x 1) + (2 x 1) + (212 x 1)
Decimal value = 7797

This is in fact incorrect!
There is one bit device which has been shaded in. If its header notation is studied
carefully it will be noted that it says MSB. This is the Most Significant Bit. This single bit
device will determine if the data will be interpreted as a positive or negative number. In
this example the MSB is equal to 1. This means the data is negative.
The answer however, is not -7797.

TP03 Serial Programmable Controller Devices in Detail 3

 3-26

The reason this is not -7797 is because a negative value is calculated using two’s
compliment (described later) but can quickly be calculated in the following manner:
Because this is a negative number, a base is set as -32768. This is the smallest
number available with 16bit data. To this the positive sum of the active bits is added,
i.e. -32768 +7797.
The correct answer is therefore -24971.
Remember this is now a decimal representation of the original 16 bit - bit pattern. If the
original pattern was re-assessed as a hexadecimal number the answer would be
different.

b) A hexadecimal view
Taking the same original bit pattern used in point a) and now adding a hexadecimal
notation instead of the binary (base 2) notation the bit patterns new meaning becomes:

Hexadecimal value = (1 x 8) + (1 x 1)) , ((1 x 8) + (1 x 4) + (1 x 2) , (1 x 4) + (1 x 2) + (1

x 1) , (1 x 4) + (1 x 1)
Hexadecimal value = 9E75

Two things become immediately obvious after a hexadecimal conversion. The first is
that there is sign bit as hexadecimal numbers are always positive.
The second is there is an "E" appearing in the calculated data. This is actually
acceptable as hexadecimal counts from 0 to 15. But as there are only ten digits (0 to 9),
substitutes need to be found for the remaining base 16 numbers, i.e. 10, 11, 12, 13, 14
and 15. The first six characters from the alphabet are used as the replacement indices,
e.g. A to F respectively.
As a result of base 16 counting, 4 binary bits are required to represent one base 16 or
hexadecimal number. Hence, a 16 bit data word will have a 4 digit hexadecimal code.
There is actually a forth interpretation for this bit sequence. This is a BCD or Binary
Coded Decimal reading. The following section converts the original bit pattern into a
BCD format.

c) A BCD conversion
Using the original bit pattern as a base but adding the following BCD headers allows
the conversion of the binary data into a BCD format.

Binary Coded Decimal value= ERROR!!!!!
It will be noticed that this will produce an ERROR. The conversion will not be correct.
This is because BCD numbers can only have values from 0 to 9, but the second block

TP03 Serial Programmable Controller Devices in Detail 3

 3-27

of 4 bit devices from the left would have a value of 14. Hence, the error.
The conversion process is very similar to that of hexadecimal except for the mentioned
limit on values of 0 to 9. If the other blocks were converted just as an example the
following values would be found;

Extreme Left Hand Block= ((1 × 8) + (1 × 1)) = 9
Second Right Hand Block= ((1 × 4) + (1 × 2) + (1 × 1)) = 7
Extreme Right Hand Block= ((1 × 4) + (1 × 1)) = 5

BCD data is read from left to right as a normal number would be read. Therefore, in
this example the “9” would actually represent “9000”. The second right hand block is
actually “70” not “7”. The units are provided by the extreme right hand block, i.e. 5. The
hundreds “100’s” would have been provided by the second left hand block (which is in
error). It is also important to note that there is no sign with BCD converted data. The
maximum number allowable for a single data word is “9999” and the minimum is
“0000”.

Word Data Summary
In each of the previous cases the original bit pattern had a further meaning. To recap
the three new readings and the original bit pattern,

Decimal : -24971
Hexadecimal : 9E75
BCD : Error (9?75)
Each meaning is radically different from the next yet they are all different
ways of describing the same thing. They are in fact all equal to each other!

3.14.4 Two’s Compliment
Programmable controllers, computers etc, use a format called 2’s compliment. This is
a mathematical procedure which is more suited to the micro processors operational
hardware requirements. It is used to represent negative numbers and to perform
subtraction operations.
The procedure is very simple, in the following example “15 - 7” is going to be solved:
Step1: Find the binary values (this example uses 8 bits)

15 = 00001111
7 = 00000111

Step2: Find the inversion of the value to be subtracted.
Procedure: invert all 1ís to 0ís and all 0ís to 1’s.

7 = 00000111
Inverted 7 = 11111000

Step3: Add 1 to the inverted number.
Procedure: add 1 to the right hand most bit. Remember this is binary addition
hence, when a value of 2 is obtained 1 is moved in to the next left hand position
and the remainder is set to 0(zero);

Inverted7 11111000
Additional1 00000001

TP03 Serial Programmable Controller Devices in Detail 3

 3-28

Answer 11111001
This result is actually the same as the negative value for 7 i.e. -7.

Step4: Add the answer to the number the subtraction is being made from (i.e. 15).
Procedure: Remember 1+1 = 0 carry 1 in base 2 (binary).
Original value15 00001111
Answer found in step3 11111001
Solution (1)00001000
The “(1)” is a carried “1” and is ignored as this example is only dealing with 8
bits.

Step 5: Convert the answer back.
00001000 = 8

The answer is positive because the MSB (the most left hand bit) is a 0 (zero). If a quick
mental check is made of the problem it is indeed found that “15-7 = 8”.
In fact no subtraction has taken place. Each of the steps has either converted some
data or performed an addition. Yet the answer is correct 15 - 7 is 8. This example
calculation was based on 8 bit numbers but it will work equally well on any other
quantity of bits.

3.15 Floating Point And Scientific Notation

PLC’s can use many different systems and methods to store data.
The most common have already been discussed in previous sections e.g. BCD, Binary,
Decimal, Hex. These are what is known as ‘integer’ formats or ‘whole number formats’.
As the titles suggest these formats use only whole numbers with no representation of
fractional parts. However, there are two further formats which are becoming increasingly
important and they are:

a) Floating point and

TP03 Serial Programmable Controller Devices in Detail 3

 3-29

b) Scientific notation
Both of these formats are in fact closely related. They both lend themselves to creating
very large or very small numbers which can describe both whole and fractional
components.

General note:
 Sometimes the words ‘Format’, ‘Mode’ and ‘Notation’ are interchanged when

descriptions of these numerical processes are made. However, all of these words are
providing the same descriptive value and as such users should be aware of their
existence.

Some useful constants
π 3.141 X 100

2π 6.283 X 100

π/4 7.853 X 10-1

π2 9.869 X 100

The speed of light 2.997 X 108 m/s
Gravity, g 9.807 X 100 m/s2

e 2.718 X 100

Fixed points:
Boiling point of liquid oxygen -1.8297 _ 102 °C
Melting point of ice 0.00 _ 100 °C
Triple point of water 1.00 _ 10-2 °C
Boiling point of water 1.00 _ 102 °C

3.15.1 Scientific Notation
This format could be called the step between the ‘integer’ formats and the full floating
point formats. In basic terms Scientific Notation use two devices to store information about
a number or value. One device contains a data string of the actual characters in the
number (called the mantissa), while the second device contains information about the
number of decimal places used in the number (called the exponent). Hence, Scientific
Notation can accommodate values greater/smaller than the normal 32 bit limits, i.e.
-2,147,483,648 to 2,147,483,647 where Scientific Notation limits are;

Maximums Minimums
9999 _ 1035 9999 _ 10-41

-9999 _ 1035 -9999 _ 10

Scientific Notation can be obtained by using the BCD, or EBCD, instruction (FNC 18 or
FNC 118) with the float flag M8023 set ON. In this situation floating point format numbers
are converted by the BCD instruction into Scientific Notation
Scientific Notation can be converted back to floating point format by using the BIN
instruction (FNC 19) with the float flag M8023 set ON

The following points should be remembered about the use of Scientific Notation :
 The mantissa and exponent are stored

in consecutive data registers.
Each part is made up of 16 bits and can
be assigned a positive or negative value

b0b15

EXPONENT
Data Register D+1

Sign bit (MSB)
1=Negative
0=Positive

b0b15

MANTISSA
Data Register D

Sign bit (MSB)
1=Negative
0=Positive

TP03 Serial Programmable Controller Devices in Detail 3

 3-30

indicated by the value of the most significant bit (MSB, or bit 15 of the data register) for
each number.

 The mantissa is stored as the first 4 significant figures without any rounding of the
number, i.e. a floating point number of value 2.34567 X 103 would be stored as a
mantissa of 2345 at data register D and an exponent of 0 (zero) at data register D+1.

 The range of available mantissa values is 0, 1000 to 9999 and -1000 to -9999.
 The range of available exponent values is +35 through to -41.
 Scientific format cannot be used directly in calculations, but it does provide an ideal

method of displaying the data on a monitoring interface.

3.15.2 Floating Point Format
Floating point format extends the abilities and ranges provided by Scientific Notation with
the ability to represent fractional portions of whole numbers, for example; performing and
displaying the calculation of 22 divided by 7 would yield the following results:

a) Normal PLC operation using decimal (integers) numbers would equal 3 remainder 1

b) In floating point it would equal 3.14285 (approximately)
c) In Scientific format this calculation would be equal to 3142 X 10 -3

So it can be seen that a greater degree of accuracy is provided by floating point numbers,
i.e. through the use of larger numerical ranges and the availability of more calculable
digits. Hence, calculations using floating point data have some significant advantages.
Decimal data can be converted in to floating point by using the FLT, float instruction (FNC
49). When this same instruction is used with the float fag M8023 set ON, floating point
numbers can be converted back to decimal.
The following points should be remembered about the use of Floating Point;
 Floating point numbers, no matter what numerical value, will always occupy two

consecutive data registers (or 32 bits).
 Floating point values cannot be directly monitored, as they are stored in a special

format recommended by the I.E.E.E (Institute of Electrical and Electronic Engineers)
for personal and micro computer applications.

 Floating point numbers have both mantissa and exponents (see Scientific Notation for
an explanation of these terms). In the case of floating point exponents, only 8 bits are
used.
Additionally there is a single sign bit for the mantissa. The remaining bits of the 32 bit
value, i.e. 23 bits, are used to ‘describe’ the mantissa value.

Valid ranges for floating point numbers as used :
Description Sign exponent Mantissa Remark

TP03 Serial Programmable Controller Devices in Detail 3

 3-31

Normal Float 0 or 1 11111110
00000001

11111111111111111111111
11111111111111111111110
00000000000000000000001
00000000000000000000000

Large number+-/3.403x1038

Accuracy:7 significant figures
Smallest number+-1.175x1038

Zero 0 or 1 00000000 00000000000000000000000 All digits are 0

TP03 Serial Programmable Controller Appiled instructions
4

 4-1

4. Applied Instructions
Applied Instructions are the specialist instruction of PLC. They allow the user to perform
complex data manipulations, mathematical operations while still being very easy to program
and monitor. Each applied instruction has unique mnemonics and special function numbers.
Each applied instruction will be expressed using a table similar to that shown below:

Operands
Mnemonic Function

D
Program steps

CJ FNC
00(Conditional Jump)

A method of jumping to
an identified pointer
position

Valid pointers from the
range 0 to 63

CJ,CJP:3 steps
Jump pointer
P□□:1 step

The table will be found at the beginning of each new instruction description. The area identified
as ‘Operands’ will list the various devices (operands) that can be used with the instruction.
Various identification letters will be used to associate each operand with its function, i.e.
destination, S- source, n, m- number of elements. Additional numeric suffixes will be attached if
there are more than one operand with the same function.

No modification of the instruction mnemonic is required for 16 bit operation. However, pulse
operation requires a ‘P’ to be added directly after the mnemonic while 32 bit operation requires
a ‘D’ to be added before the mnemonic. This means that if an instruction was being used with
both pulse and 32 bit operation it would look like..... D□□□P where □□□ was the basic
mnemonic.

The ‘pulse’ function allows the associated instruction to be activated on the rising edge of the
control input. The instruction is driven ON for the duration of one program scan.
Thereafter, while the control input remains ON, the associated instruction is not active.
To re-execute the instruction the control input must be turned from OFF to ON again.
The FLAGS section identifies any flags that are used by the instruction. Details about the
function of the flag are explained in the instructions text.

 For instructions that operate continuously, i.e. on every scan of the program the instruction
will operate and provide a new, different result, the following identification symbol will be
used ‘★’ to represent a high speed changing state. Typical instructions covered by this
situation have a strong incremental, index able element to their operation.

 In most cases the operands of applied instructions can be indexed by a users program. For
those operands which cannot be indexed, the symbol ‘☆’ has been used to signify an
operand as being ‘fixed’ after it has been written.

 Certain instructions utilize additional data registers and/or status flags for example a math
function such as ADD (FNC 20) can identify a zero result, borrow and carry conditions by
using preset auxiliary relays, M8020 to M8021 respectively.

TP03 Serial Programmable Controller Appiled instructions
4

 4-2

4.1 Program Flow-Functions00 to 09
Contents:
CJ - Conditional jump FNC 00
CALL - Call Subroutine FNC 01
SRET - Subroutine Return FNC 02
IRET - Interrupt Return FNC 03
EI - Enable Interrupt FNC 04
DI - Disable Interrupt FNC 05
FEND - First End FNC 06
WDT - Watchdog Timer FNC 07
FOR - Start of a For/Next Loop FNC 08
NEXT - End a For/Next Loop FNC 09
Symbols list:
D - Destination device.
S - Source device.
m, n- Number of active devices, bits or an operational constant.

Additional numeric suffixes will be attached if there are more than one operand with the
same function e.g. D1, S3 or for lists/tabled devices D3+0, S+9 etc.

MSB -Most Significant Bit, sometimes used to indicate the mathematical sign of a number, i.e.
positive = 0, and negative = 1.

LSB - Least Significant Bit.

Instruction modifications:
□□□- An instruction operating in 16 bit mode, where □□□ identifies the instruction

mnemonic.
□□□P - A 16 bit mode instruction modified to use pulse (single) operation.
D□□□ - An instruction modified to operate in 32 bit operation.
D□□□P - A 32 bit mode instruction modified to use pulse (single) operation.

★ - A repetitive instruction which will change the destination value on every scan unless

modified by the pulse function.
☆ - An operand which cannot be indexed, i.e. The addition of V or Z is either invalid or will

have no effect to the value of the operand.

TP03 Serial Programmable Controller Appiled instructions
4

 4-3

4.1.1 CJ (FNC 00)
Operands

Mnemonic Function
D

Program steps

CJ FNC 00
(Conditional Jump)

jumps to an identified
pointer position

Valid pointers from the
range 0 to 62,64 to 255

CJ,CJP:3 steps
Jump pointer
P□□:1 step

Operation:
When the CJ instruction is active it forces the program to
jump to an identified program marker. While the jump takes
place the intervening pro-gram steps are skipped. This
means they are not processed in any way. The resulting
effect is to speed up the programs operational scan time.

Points to note:
a) Many CJ statements can reference a single pointer.
b) Each pointer must have a unique number. Using

pointer P63 is equivalent to jumping to the END
instruction.

c) Any program area which is skipped, will not update
output statuses even if the input devices change.
For example, the program opposite shows a situation
which loads X001 to drive Y1. Assuming X001 is ON
and the CJ instruction is activated the load X001, out Y1
is skipped. Now even if X001 is turned OFF Y1 will
remain ON while the CJ instruction forces the program
to skip to the pointer P0. The reverse situation will also
apply, i.e. if X001 is OFF to begin with and the CJ
instruction is driven, Y1 will not be turned ON if X001 is
turned ON. Once the CJ instruction is deactivated X001 will drive Y1 in the normal manner.
This situation applies to all types of outputs, e.g. SET, RST, OUT, Y, M and S devices

d) The CJ instruction can jump to any point within the main program body or after an FEND
instruction

e) A CJ instruction can be used to Jump forwards through a
program, i.e .towards the END instruction OR it can jump
backwards towards step 0. If a backwards jump is used
care must be taken not to overrun the watchdog timer
setting otherwise the PLC will enter an error situation.

f) Unconditional jumps can be entered by using special
auxiliary coils such as M8000. In this situation while the PLC is in RUN the program will
ALWAYS execute the CJ instruction in an unconditional manner.

IMPORTANT:
 Timers and counters will freeze their current values if they are skipped by a CJ instruction.

For example if Y1 in the previous program (see point c) was replaced by T0 K100 and the

X000
CJ P1

X030
P1

D

X000
CJ P0

Y1
X001

P0 Y0
M8000

END

X022
CJ P10

P10

X020
CJ P9

X021
CJ P9

P9

TP03 Serial Programmable Controller Appiled instructions
4

 4-4

CJ instruction was driven, the contents of T0 would not change/increase until the CJ
instruction is no longer driven, i.e. the current timer value would freeze.
High speed counters are the only exception to this situation as they are processed
independently of the main program.

Using applied instructions:
 Applied instructions are also skipped if they are programmed between the CJ instruction

and the destination pointer. However, The PLSY (FNC 57) and PWM (FNC 58) instructions
will operate continuously if they were active before the CJ instruction was driven, otherwise
they will be processed, i.e. skipped, as standard applied instructions.

Details of using CJ with other program flow instructions
 • Further details can be found on pages 7-12 and 7-13 about the combined use of different

program flow techniques (such as master control, MC etc).

TP03 Serial Programmable Controller Appiled instructions
4

 4-5

4.1.2 CALL (FNC 01)
Operands

Mnemonic Function
D

Program steps

CALL
FNC 01
(Call Sub-routine)

Executes the subroutine
program starting at the
identified pointer
position

Valid pointers from the
range 0 to 62,63 to 255
Nest levels:5 including the
initial CALL

CALL,CALLP:
3 steps
Subroutine pointer
PPP:1 step

Operation:

When the CALL instruction is active it forces the program to
run the subroutine associated with the called pointer (area
identified as subroutine P10). A CALL instruction must be
used in conjunction with FEND (FNC 06) and SRET (FNC
02) instructions. The program jumps to the subroutine
pointer (located after an FEND instruction) and processes
the contents until an SRET instruction is encountered. This
forces the program flow back to the line of ladder logic
immediately following the original CALL instruction

Points to note:
a) Many CALL statements can reference a single subroutine.
b) Each subroutine must have a unique pointer number. Subroutine pointers can be

selected from the range P0 to P62. Subroutine pointers and the pointers used for CJ
(FNC 00) instructions are NOT allowed to coincide.

c) Subroutines are not normally processed as they occur after an FEND instruction. When
they are called, care should be taken not to overrun the watchdog timer setting.

d) Subroutines can be nested for 16 levels including the
initial CALL instruction. As an example the program
showed opposite shows a 2 level nest.
When X001 is activated the program calls subroutine
P11. Within this subroutine is a CALL to a second
subroutine P12. When both subroutines P11 and P12
are active simultaneously, they are said to be nested.
Once subroutine P12 reaches its SRET instruction it
returns the program control to the program step
immediately following its original CALL (see ○1). P11
then completes its operation, and once its SRET
instruction is processed the program returns once again
to the step following the CALL P11 statement (see ○2).

.

CALL P10

X000

FEND

SRET

D

Subroutine D10
P10

CALL P11

X001

FEND

SRET

P11

CALL P12

SRET

P12

2

1

TP03 Serial Programmable Controller Appiled instructions
4

 4-6

4.1.3 SRET (FNC 02)
Operands

Mnemonic Function
D

Program
steps

SRET
FNC 02
(Sub-routine
return)

Returns operation
from a subroutine
program

N/A
Automatically returns to the step
immediately following the CALL instruction
which activated the subroutine

SRET:1 step

Operation:
SRET signifies the end of the current subroutine and returns the program flow to the step
immediately following the CALL instruction which activated the closing subroutine.
Points to note:
a) SRET can only be used with the CALL instruction.
b) SRET is always programmed after an FEND instruction - please see the CALL (FNC

01) instruction for more details.

4.1.4 IRET, EI, DI (FNC 03, 04, 05)
Operands

 Mnemonic Function
D

Program
steps

IRET
FNC 03
(Interrupt
return)

Forces the
program to return
from the active
interrupt routine

N/A
Automatically returns to the main
program step which was being processed
at the time of the interrupt call.

IRET:
1 step

EI
FNC 04
(Enable
interrupts)

Enables interrupt
inputs to be
processed

N/A
Any interrupt input being activated after
an EI instruction and before FEND or DI
instructions will be processed
immediately unless it has been
specifically disabled

EI:
1 step

DI
FNC 05
(Disable
interrupts)

Disables the
processing of
interrupt routines

N/A
Any interrupt input being activated after a
DI instruction and before an EI instruction
will be stored until the next sequential EI
instruction is processed.

DI:
1 step

I
(Interrupt
pointer)

Identifies the
beginning of an
interrupt routine

A 3 digit numeric code relating to the
interrupt
type and operation

I□□□:
1 step

General description of an interrupt routine:
An interrupt routine is a section of program which is, when triggered, operated immediately
interrupting the main program flow. Once the interrupt has been processed the main program
flow continues from where it was, just before the interrupt originally occurred.
Operation:
Interrupts are triggered by different input conditions, sometimes a direct input such as X0 is

TP03 Serial Programmable Controller Appiled instructions
4

 4-7

used other times a timed interval e.g. 30 msec can be used. To program and operate interrupt
routines requires up to 3 dedicated instructions (those detailed in this section) and an interrupt
pointer.
Defining an interrupt routine:
An interrupt routine is specified between its own
unique interrupt pointer and the first occurrence of an
IRET instruction. Interrupt routines are ALWAYS
programmed after an FEND instruction. The IRET
instruction may only be used within interrupt routines.
Controlling interrupt operations:
The PLC has a default status of disabling interrupt
operation. The EI instruction must be used to activate the interrupt facilities. All interrupts which
physically occur during the program scan period from the EI instruction until the FEND or DI
instructions will have their associated interrupt routines run. If these interrupts are triggered
outside of the enclosed range (EI-FEND or EI-DI, see diagram below) they will be stored until
the EI instruction is processed on the following scan. At this point the interrupt routine will be
run.

FEND

IRET

DI
Disabled interrupts

Interrupt routine
I301

Enabled interrupts
EI

If an individual interrupt is to be disabled its associated special M coil must be driven ON. While
this coil is ON the interrupt routine will not be activated. For details about the disabling M coils
see the PLC device tables in chapter 7.
Nesting interrupts:
Interrupts may be nested for two levels. This means that an interrupt may be interrupted during
its operation. However, to achieve this, the interrupt routine which may be further interrupted
must contain the EI and DI instructions; otherwise as under normal operation, when an interrupt
routine is activated all other interrupts are disabled.
Simultaneously occurring interrupts:
If more than one interrupt occurs sequentially, priority is given to the interrupt occurring first. If
two or more interrupts occur simultaneously, the interrupt routine with the lower pointer number
is given the higher priority.
Using general timers within interrupt routines:
The PLC has a range of special timers which can be used within interrupt routines. Timers
Used in Interrupt and ‘CALL’ Subroutines.
Input trigger signals - pulse duration:
Interrupt routines which are triggered directly by interrupt inputs, such as X0 etc., require a
signal duration of approximately 20µsec, i.e. the input pulse width is equal or greater than

FEND

IRET

IRET

Interrupt Program I001

Interrupt Program I201

I001

I002

TP03 Serial Programmable Controller Appiled instructions
4

 4-8

200µsec. When this type of interrupt is selected, the hardware input filters are automatically
reset to 50µsec. (under normal operating circumstances the input filters are set to 10msec.).
Pulse catch function:
Direct high speed inputs can be used to ‘catch’ short pulsed signals. When a pulse is received
at an input a corresponding special M coil is set ON. This allows the ‘captured’ pulse to be used
to trigger further actions, even if the original signal is now OFF. The PLC requires the EI
instruction (FNC 04) to activate pulse catch for inputs X0 through X5, with M8170 to M8175
indicating the caught pulse. Note that, if an input device is being used for another high speed
function, then the pulse catch for that device is disabled.

4.1.5 FEND (FNC 06)

Operands
Mnemonic Function

D
Program

steps
FEND
FNC 06
(First end)

Used to indicate
the end of the main
program block

N/A
Note: Can be used with CJ (FNC 00),
CALL (FNC 01) and interrupt routines

FEND:
1 step

Operation:
An FEND instruction indicates the first end of a main program and the start of the program
area to be used for subroutines. Under normal operating circumstances the FEND
instruction performs a similar action to the END instruction, i.e. output processing, input
processing and watchdog timer refresh are all carried out on execution.
Points to note:
a) The FEND instruction is commonly used with CJ-P-FEND, CALL-P-SRET and I-IRET

program constructions (P refers to program pointer, I refers to interrupt pointer).
Both CALL pointers/subroutines and interrupt pointers (I) subroutines are ALWAYS
programmed after an FEND instruction, i.e. these program features NEVER appear in
the body of a main program.

b) Multiple occurrences of FEND instructions can be used to separate different

subroutines (see diagram above).
c) The program flow constructions are NOT allowed to be split by an FEND instruction.
d) FEND can never be used after an END instruction.

TP03 Serial Programmable Controller Appiled instructions
4

 4-9

4.1.6 WDT (FNC 07)

Operands
Mnemonic Function

D
Program

steps
WDT FNC 07 (Watch
dog timer refresh)

Used to refresh the
watch dog timer during
a program scan

N/A
Can be driven at any time
within the main program body

WDT,
WDTP:
1 step

Operation:
The WDT instruction refreshes the PLC’s watchdog timer.
The watchdog timer checks that the program scan
(operation) time does not exceed an arbitrary time limit. It is
assumed that if this time limit is exceeded there is an error at some point. The PLC will then
cease operation to prevent any further errors from occurring. By causing the watchdog
timer to refresh (driving the WDT instruction) the usable scan (program operation) time is
effectively increased.

Points to note:
a) When the WDT instruction is used it will operate on every program scan so long as its

input condition has been made.
To force the WDT instruction to operate for only ONE scan requires the user to program
some form of interlock. FX users have the additional option of using the pulse (P) format
of the WDT instruction, i.e. WDTP.

b) The watchdog timer has a default setting of 200
msec. This time limit may be customized to a users own
requirement by editing the contents of data register
D8000, the watchdog timer register.

WDT
X000

M8000
MOV K150 D8000

TP03 Serial Programmable Controller Appiled instructions
4

 4-10

4.1.7 FOR, NEXT (FNC 08, 09)
Operands

Mnemonic Function
D

Program
steps

FOR FNC 08
(Start of a
FOR-NEXT loop)

Identifies the start
position and the
number of repeats for
the loop

K, H,
KnX, KnY, KnM, KnS,
T, C, D, V, Z

FOR:
3 step

NEXT FNC 09
(End of a
FOR-NEXT loop)

Identifies the end
position for the
loop

N/A
Note: The FOR-NEXT loop can be
nested for 5 levels,
i.e. 5 FOR-NEXT loops are
programmed within each other

NEXT:
1 step

Operation:
The FOR and NEXT instructions allow the specification of
an area of program, i.e. the program enclosed by the
instructions, which is to be repeated S number of times.

Points to note:
a) The FOR instruction operates in a 16 bit mode hence, the value of the operand S may
be within the range of 1 to 32,767. If a number between the range -32,768 and 0 (zero) is
specified it is automatically replaced by the value 1, i.e. the FOR-NEXT loop would execute
once.
b) The NEXT instruction has NO operand.
c) The FOR-NEXT instructions must be programmed as a pair e.g. for every FOR
instruction there MUST be an associated NEXT instruction. The same applies to the NEXT
instructions, there MUST be an associated FOR instruction. The FOR-NEXT instructions
must also be programmed in the correct order. This means that programming a loop as a
NEXT-FOR (the paired NEXT instruction proceeds the associated FOR instruction) is NOT
allowed.
Inserting an FEND instruction between the FOR-NEXT instructions, i.e. FOR-FEND- NEXT,
is NOT allowed. This would have the same effect as programming a FOR without a NEXT
instruction, followed by the FEND instruction and a loop with a NEXT and no associated
FOR instruction.
d) A FOR-NEXT loop operates for its set number of times before the main program is
allowed to finish the current program scan.
e) When using FOR-NEXT loops care should be taken not the exceed the PLC’s watchdog
timer setting. The use of the WDT instruction and/or increasing the watchdog timer value is
recommended.
Nested FOR-NEXT loops:
FOR-NEXT instructions can be nested for 16 levels. This means that 16 FOR-NEXT loops
can be sequentially programmed within each other.
In the example a 3 level nest has been programmed. As each new FOR-NEXT nest level is

FOR K1X0

NEXT

S

TP03 Serial Programmable Controller Appiled instructions
4

 4-11

encountered the number of times that loop is repeated is increased by the multiplication of
all of the surrounding/previous loops.
For example, loop C operates 4 times. But within
this loop there is a nested loop, B. For every
completed cycle of loop C, loop B will be
completely executed, i.e. it will loop D0Z
times.This again applies between loops B and A.
The total number of times that loop A will operate
for ONE scan of the program will equal;
1) The number of loop A operations multiplied by
2) The number of loop B operations multiplied by
3) The number of loop C operations
If values were associated to loops A, B and C,
e.g. 7, 6 and 4 respectively, the following number
of operations would take place in ONE program
scan:
Number of loop C operations = 4 times
Number of loop B operations = 24 times (C × B, 4 × 6)
Number of loop A operations = 168 times (C × B × A, 4 × 6 × 7)
Note:
The use of the CJ programming feature, causing the jump to P22 allows the ‘selection’ of
which loop will be processed and when, i.e. if X10 was switched ON, loop A would no
longer operate.

FO R K 4

FO R D 0Z

CJ P22

FO R K1X 000

N EX T

N EX T

N EX T

X010

1

2

3

A B C

P22

TP03 Serial Programmable Controller Appiled instructions
4

 4-12

4.2 Move And Compare - Functions 10 to 19
Contents:
CMP - Compare FNC 10
ZCP - Zone Compare FNC 11
MOV - Move FNC 12
SMOV - Shift Move FNC 13
CML - Compliment FNC 14
BMOV - Block Move FNC 15
FMOV - Fill Move FNC 16
XCH - Exchange FNC 17
BCD - Binary Coded Decimal FNC 18
BIN - Binary FNC 19
Symbols list:
D - Destination device.
S - Source device.
m, n- Number of active devices, bits or an operational constant.

Additional numeric suffixes will be attached if there are more than one operand with the
same function e.g. D1, S3 or for lists/tabled devices D3+0, S+9 etc.

MSB - Most Significant Bit, sometimes used to indicate the mathematical sign of a number,
i.e.positive = 0, and negative = 1.

LSB - Least Significant Bit.
Instruction modifications:
□□□ - An instruction operating in 16 bit mode, where□□□identifies the instruction

mnemonic.
□□□P - A 16 bit mode instruction modified to use pulse (single) operation.
D□□□ - An instruction modified to operate in 32 bit operation.
D□□□P - A 32 bit mode instruction modified to use pulse (single) operation.

★ - A repetitive instruction which will change the destination value on every scan unless

modified by the pulse function.
☆ - An operand which cannot be indexed, i.e. The addition of V or Z is either invalid or will

have no effect to the value of the operand.

TP03 Serial Programmable Controller Appiled instructions
4

 4-13

4.2.1 CMP (FNC 10)
Operands

Mnemonic Function
S1 S2 D

Program steps

CMP
FNC 10
(Compare)

Compares two
data values -
results of <, = and
> are given

K, H,
KnX, KnY, KnM, KnS,
T, C, D, V, Z

Y,M,S
Note:
3 consecutive
devices are
used

CMP, CMPP:
7 steps
DCMP, DCMPP:
13 steps

Operation:
The data of S1 is compared to the data of S2.
The result is indicated by 3 bit devices
specified from the head address entered as D.
The bit devices indicate:
S2 is less than S1 - bit device D is ON
S2 is equal to S1 - bit device D+1 is ON
S2 is greater than S1 - bit device D+2 is ON

Note: The destination (D) device statuses will be kept even if the CMP instruction is
deactivated. Full algebraic comparisons are used, i.e. -10 is smaller than +2 etc.

4.2.2 ZCP (FNC 11)

Operands
Mnemonic Function

S1 S2 S3 D
Program steps

ZCP
 FNC 11
(Zone
compare)

Compares a data
value against a
data range -
results of <, = and
> are given.

K, H,
KnX, KnY, KnM, KnS,
T, C, D, V, Z
Note:
S1 should be less than S2

Y, M, S
Note: 3
consecutive
devices are used.

ZCP,Z CPP:
9 steps
DZCP,DZCPP:
17 steps

Operation:
The operation is the same as the
CMP Instruction except a single data
value (S3) is compared against a data
range (S1-S2). S3 is less than S1and
S2- bit device D is ON S3 is equal to or
between S1 and S2 - bit device

D+1 is ON
S3 is greater than both S1 and S2 -

bit device
D+2 is ON

X000

C20<K100，M0 : ON

CMP K100 C20 M0

M0

M1

M2
C20=K100，M1: ON

C20>K100，M2 : ON

S1 S2 D

X001

C30<K100,K120 , M3 : ON
M3

M4

M5
K100≤C30≤K120，M4 : ON

ZCP K100 K120 C30 M3

C30>K100,K120，M12 : ON

S1 S2 S3 D

TP03 Serial Programmable Controller Appiled instructions
4

 4-14

4.2.3 MOV (FNC 12)
Operands

Mnemonic Function
S D

Program steps

MOV
FNC 12
(Move)

Moves data from
one storage area
to a new storage
area

K, H,
KnX, KnY, KnM, KnS,
T, C, D, V, Z

KnY, KnM, KnS,
T, C, D, V, Z

MOV, MOVP:
5 steps
DMOV,DMOVP:
9 steps

Operation:
The contents of the source device (S) is copied to
the destination (D) device when the control input is
active. If the MOV instruction is not driven, no
operation takes place.

Note: This instruction has a special programming technique which allows it to mimic the
operation of newer applied instructions when used with older programming tools.

4.2.4 SMOV (FNC 13)
Operands

Mnemonic Function
M1 M2 N S D

Program steps

K, H,
KnX, KnY,
KnM, KnS,
T,C,D,V,Z

K, H,
KnY, KnM,
KnS,
T,C,D,V,Z

SMOV
FNC 13
(Shift move)

Takes elements
of an existing 4
digit decimal
number and
inserts them
into a new 4
digit number

K, H
Note: available
range 1 to 4
☆

Range 0 to 9,999
(decimal)or 0 to 9,999
(BCD)when M8168 is
used

SMOV, SMOVP:
11 steps

Operation 1:
This instruction copies a specified number of Digits
from a 4 digit decimal source (S) and places them
at a specified location within a destination (D)
number (also a 4 digit decimal). The existing data in the destination is overwritten.

m1 - The source position of the 1st digit to be moved
m2 - The number of source digits to be moved
n- The destination position for the first digit

Note: The selected destination must NOT be smaller than the quantity of source data.
Digit positions are referenced by number: 1= units, 2= tens, 3= hundreds, 4=thousands.

.

X000
MOV H0050 D 10

S D

SMOV D 1 K 4 K 2 D 2 K 3
X000

S M1 M2 D n

TP03 Serial Programmable Controller Appiled instructions
4

 4-15

Operation 2:
This modification of the SMOV operation allows BCD numbers to be manipulated in exactly the
same way as the ‘normal’ SMOV manipulates decimal numbers, i.e. This instruction copies a
specified number of digits from a 4 digit BCD source (S) and places them at a specified location
within a destination (D) number (also a 4 digit
BCD number).To select the BCD mode the
SMOV instruction is coupled with special M
coil M8168 which is driven ON. Please
remember that this is a ‘mode’ setting
operation and will be active, i.e. all SMOV
instructions will operate in BCD format until the
mode is reset, i.e. M8168 is forced OFF.

4.2.5 CML (FNC 14)

Operands
Mnemonic Function

S D
Program steps

CML
FNC 14
(Compliment)

Copies and
inverts the source bit
pattern to a specified
destination

K, H,
KnX, KnY,
KnM, KnS,
T, C, D, V, Z

KnY, KnM, KnS,
T, C, D, V, Z

CML,CMLP:
5 steps
DCML,DCMLP:
9 steps

Operation:
A copy of each data bit within the source device (S) is
inverted and then moved to a designated destination
(D).
This means each occurrence of a ‘1’ in the source data will become a ‘0’ in the destination
data while each source digit which is ‘0’ will become a ‘1’. If the destination area is smaller
than the source data then only the directly mapping bit devices will be processed.

SMOV D 1 K 4 K 2 D 2 K 3

X000

S M1 M2 D n
M8168

M8000
M8168

X000
CML D0 K1Y0

S D

TP03 Serial Programmable Controller Appiled instructions
4

 4-16

4.2.6 BMOV (FNC 15)
Operands

Mnemonic Function
S D N

Program
steps

BMOV
FNC 15
(Block move)

Copies a
specified block
of multiple data
elements to a
new destination

KnX, KnY,
KnM, KnS,
T,C,D, V, Z File
registers,

KnY, KnM,KnS,
T, C, D, V, Z
File registers

K, H, D
☆
Note:
N≤512

BMOV,
BMOVP:
7 steps

Operation:
A quantity of consecutively occurring data elements
can be copied to a new destination.The source data
is identified as a device head address (S) and a
quantity of consecutive data elements (n). This is
moved to the destination device (D) for the same number of elements (n).
Points to note:
a) If the quantity of source devices (n) exceeds the actual number of available source

devices, then only those devices which fall in the available range will be used.
b) If the number of source devices exceeds the available space at the destination location,

then only the available destination devices will be written to.
c) The BMOV instruction has a built in automatic feature to prevent overwriting errors from

occurring when the source (S - n) and destination (D -n) data ranges coincide. This is
clearly identified in the following diagram:
(Note: The numbered arrows indicate the order in which the BMOV is processed)

X000 S D

BMOV D5 D7 K3

N

TP03 Serial Programmable Controller Appiled instructions
4

 4-17

4.2.7 FMOV (FNC 16)
Operands

Mnemonic Function
S D N

Program steps

FMOV
FNC 16
(Fill move)

Copies a single
data device to a
range of destination
devices

KnX, KnY,
KnM, KnS,
T, C, D, V,
Z

KnY, KnM,
KnS,
T, C, D, V,
Z

K, H
☆
Note:
N≤512

FMOV,
FMOVP:7 steps
DFMOV,
DFMOVP: 13 steps

Operation:
The data stored in the source device (S) is
copied to every device within the destination
range. The range is specified by a device head
address (D) and a quantity of consecutive
elements (n). If the specified number of destination devices (n) exceeds the available space at
the destination location, then only the available destination devices will be written to.

Note: This instruction has a special programming technique which allows it to mimic the
operation of newer applied instructions when used with older programming tools.

X000 S D N
FMOV K0 D0 K10

TP03 Serial Programmable Controller Appiled instructions
4

 4-18

4.2.8 XCH (FNC 17)
Operands

Mnemonic Function
D1 D2

Program steps

XCH
FNC 17
(Exchange)
★

Data in the
designated
devices is
exchanged

KnY, KnM, KnS, T, C, D, V, Z
Note: when using the byte XCH (i.e.M8160 is
ON) D1 and D2 must be the same device
otherwise a program error will occur and M8067
will be turned ON.

XCH,XCHP:
5 steps
DXCH,DXCHP:
9 steps

Operation 1: The contents of the two destination devices D1 and D2are swapped, i.e. the
complete word devices are exchanged. Ex.

Operation 2: This function is equivalent to FNC 147 SWAP The bytes within each word of
the designated devices D1 are exchanged when ‘byte mode flag’ M8160 is ON. Please note
that the mode will remain active until it is reset, i.e. M8160 is forced OFF. Ex.

Data register Before XCH After XCH

D1 20 530

D17 530 20

Value are in HEX for clarity Before DXCH After DXCH
Byte 1 1FH 8BH

D10
Byte 2 8BH 1FH

Byte 1 C4H 35H
D11

Byte 2 35H C4H

X20

DXCHP D10 D11

M1860

M8000
M1860

D1 D2

X000
XCHP D1 D17

D1 D2

TP03 Serial Programmable Controller Appiled instructions
4

 4-19

4.2.9 BCD (FNC18)
Operands

Mnemonic Function
S D

Program steps

KnX,KnY, KnM, KnS,
T, C, D, V, Z

KnY, KnM, KnS,
T, C, D, V, Z

BCD
FNC 18
(Binary
coded
decimal)

Converts binary
numbers to BCD
equivalents /
Converts
floating
point data to
scientific format

When using M8023 to convert data to
scientific format, only double word (32 bit)
data registers (D) may be used.

BCD, BCDP:
5 steps
DBCD,
DBCDP:
9 steps

Operation 1:
The binary source data (S) is converted into
an equivalent BCD number and stored at
the destination device (D). If the converted
BCD number exceeds the operational ranges of 0 to 9,999 (16 bit operation) and 0 to
99,999,999 (32 bit operation) an error will occur. This instruction can be used to output
data directly to a seven segment display.
Operation 2:
This function is equivalent to FNC 118
EBCD Data(S) is converted from ‘floating
point’ format to ‘scientific format’ (D). This
instruction requires double word (32 bit)
operation and data registers as devices
(S)and (D)to operate correctly.

BCD D12 K2Y0
X000 S D

DBCD D20 D42

X000

S D
M 8023

M 8000
M 8023

TP03 Serial Programmable Controller Appiled instructions
4

 4-20

4.2.10 BIN (FNC 19)
Operands

Mnemonic Function
S D

Program steps

KnX,KnY, KnM,
KnS,
T, C, D, V, Z

KnY, KnM,
KnS,
T, C, D, V, Z

BIN
FNC 19
(Binary)

Converts BCD
numbers to their
binary equivalent
/Converts scientific
format data to floating
point format

When using M8023 to convert
data to floating point format, only
double word (32 bit) data
registers (D) may be used.

BIN, BINP:
5 steps
DBIN,DBINP:
9 steps

Operation 1:
The BCD source data (S) is converted into
an equivalent binary number and stored at
the destination device (D). If the source data
is not provided in a BCD format an error will occur. This instruction can be used to read in
data directly from thumbwheel switches.
Operation 2:
This function is equivalent to FNC 119 EBIN
Data (S) is converted from ‘scientific format’
to ‘floating point’ format (D). This instruction
requires double word (32 bit) operation and
data registers as devices (S) and (D) to
operate correctly.

BIN K2X0 D13
X000 S D

DBIN D10 D12

X000

S D

M8023

M8000
M8023

TP03 Serial Programmable Controller Appiled instructions
4

 4-21

4.3 Arithmetic And Logical Operations - Functions 20 to 29
Contents:
ADD - Addition FNC 20
SUB - Subtraction FNC 21
MUL - Multiplication FNC 22
DIV - Division FNC 23
INC - Increment FNC 24
DEC - Decrement FNC 25
WAND - Word AND FNC 26
WOR - Word OR FNC 27
WXOR - Word Exclusive OR FNC 28
NEG - Negation FNC 29
Symbols list:
D - Destination device.
S - Source device.
m, n- Number of active devices, bits or an operational constant.

Additional numeric suffixes will be attached if there are more than one operand with the
same function e.g. D1, S3 or for lists/tabled devices D3+0, S+9 etc.
MSB - Most Significant Bit, sometimes used to indicate the mathematical sign of a number,
i.e.
positive = 0, and negative = 1.

LSB - Least Significant Bit.
Instruction modifications:
□□□ - An instruction operating in 16 bit mode, where □□□ identifies the instruction

mnemonic.
□□□P - A 16 bit mode instruction modified to use pulse (single) operation.
D□□□- An instruction modified to operate in 32 bit operation.
D□□□P- A 32 bit mode instruction modified to use pulse (single) operation.

★ - A repetitive instruction which will change the destination value on every scan unless

modified by the pulse function.
☆ - An operand which cannot be indexed, i.e. The addition of V or Z is either invalid or will

have no effect to the value of the operand.

TP03 Serial Programmable Controller Appiled instructions
4

 4-22

4.3.1 ADD (FNC 20)
Operands

Mnemonic Function
S1 S2 D

Program steps

K, H, KnX, KnY,
KnM, KnS,T, C, D,
V, Z

KnY, KnM, KnS,
T, C, D, V, Z

ADD
FNC 20
(Addition)

The value of the
two source
devices is
added and the
result stored in
the destination
device

When using M8023 to add floating
point data,only double word (32 bit)
data registers (D) or constants (K/H)
may be used.

ADD, ADDP:
7 steps
DADD,DADDP:
13 steps

Operation 1:
The data contained within the source devices
(S1, S2) is combined and the total is stored at
the specified destination device (D).

Points to note:
a) All calculations are algebraically processed, i.e. 5 + (-8)= -3.
b) The same device may be used as a source (S1 or S2) and as the destination (D). If this

is the case then the ADD instruction would actually operate continuously. This means
on every scan the instruction would add the result of the last scan to the second source
device. To prevent this from happening the pulse modifier should be used or an
interlock should be programmed.

c) If the result of a calculation is “0" then a special auxiliary flag, M8020 is set ON.
d) If the result of an operation exceeds 32,767 (16 bit limit) or 2,147,483,647 (32 bit limit)

the carry flag, M8022 is set ON. If the result of an operation exceeds -32,768 or
-2,147,483,648 the borrow flag, M8021 is set ON. When a result exceeds either of the
number limits, the appropriate flag is set ON (M8021 or M8022) and a portion of the
carry/borrow is stored in the destination device. The mathematical sign of this stored
data is reflective of the number limit which has been exceeded, i.e. when -32,768 is
exceeded negative numbers are stored in the destination device but if 32,767 was
exceeded positive numbers would be stored at D.

e) If the destination location is smaller than the obtained result, then only the portion of the
result which directly maps to the destination area will be written, i.e if 25 (decimal) was
the result, and it was to be stored at K1Y4 then only Y4 and Y7 would be active. In
binary terms this is equivalent to a decimal value of 9 a long way short of the real result
of 25!

Operation 2:
This function is equivalent to FNC 120 EADD.
When ‘floating point mode flag’ M8023 is
active, i.e. ON, DADD and DADDP
instructions can be used to perform floating
point additions.

ADD D10 D12 D14
X000

S1 S2 D

DADDP H3F D4 D4

X100

S1 S2 D
M8023

M8023
M8000

TP03 Serial Programmable Controller Appiled instructions
4

 4-23

When M8023 is reset, i.e. OFF floating point manipulation will not occur. Constants (K/H)
and floating point numbers (stored in double data registers D) can be added in any
configuration. The constants (K/H) will automatically be converted to the ‘floating point
format’ for the addition operation. Answers for an operation can only be stored in double
(32 bit) data registers. Items a) and b) above are also valid for this operating mode.
Note: The appropriate dedicated floating point instruction should be used instead E.g.
Instead of DADD with M8023 ON, use FNC 120, DEADD.

4.3.2 SUB (FNC 21)
Operands Mnemoni

c
Function

S1 S2 D
Program steps

K, H, KnX, KnY, KnM,
KnS, T, C, D, V, Z

KnY, KnM, KnS,
T, C, D, V, Z

SUB
FNC 21
(Subtract
)

One source
device is Subtracted
from the other-the
result is stored in the
destination device

When using M8023 to Subtract floating
point data,only double word (32 bit) data
registers (D) or constants (K/H) may be
used.

SUB, SUBP:
7 steps

DSUB, SUBP:
13 steps

Operation 1: The data contained within the
source device, S2 is subtracted from the
contents of source device S1. The result or
remainder of this calculation is stored in the
destination device D. Note: the ‘Points to note’,
under the ADD instruction (previous page) can also be similarly applied to the subtract
instruction.
Operation 2: This function is equivalent to FNC 121 ESUB. The information regarding
‘Operation2:’ of the ADD instruction apply similarly to this second operation of the SUB
instruction (with the exception of a subtraction being performed instead of an addition). Again,
only constants and double data words can be manipulated with only DSUB, DSUBP
instruction formats being valid.

SUB D10 D12 D14

S1 S2 D

X000

TP03 Serial Programmable Controller Appiled instructions
4

 4-24

4.3.3 MUL (FNC 22)

Operands
Mnemonic Function

S1 S2 D
Program steps

K, H, KnX, KnY,
KnM, KnS, T, C,
D, V, Z

KnY,KnM,KnS, T, C, D,
Z(V)
Note: Z(V) may NOT be
usedfor 32 bit operation

MUL
FNC 22
(Multiplica
-tion)

Multiplies the
two source
devices
together the
result is stored in
the destination
device

When using M8023 to subtract floating point
data, only double word (32 bit) data
registers (D) or constants (K/H) may be
used.

MUL, MULP:
7steps
DMUL, DMULP:
13 steps

Operation 1:
The contents of the two source devices (S1, S2)
are multiplied together and the result is stored at
the destination device (D). Note the normal rules
of algebra apply.

Points to note:
a) When operating the MUL instruction in 16bit mode, two 16 bit data sources are

multiplied together. They produce a 32 bit result. The device identified as the
destination address is the lower of the two devices used to store the 32 bit result. Using
the above example with some test data:

5 (D0) × 7 (D2) = 35 - The value 35 is stored in (D4, D5) as a single 32 bit word.
b) When operating the MUL instruction in 32 bit mode, two 32 bit data sources are

multiplied together. They produce a 64 bit result. The device identified as the
destination address is the lower of the four devices used to store the 64 bit result.

c) If the location of the destination device is smaller than the obtained result, then only the
portion of the result which directly maps to the destination area will be written, i.e if a
result of 72 (decimal) is to be stored at K1Y4 then only Y7 would be active. In binary
terms this is equivalent to a decimal value of 8, a long way short of the real result of 72!

Operation 2:
This function is equivalent to FNC 122 EMUL.
When ‘floating point mode flag’ M8023 is
active,i.e. ON, DMUL and DMULP instructions
can be used to perform floating point
multiplications.
When M8023 is reset, i.e. OFF floating point
manipulation will not occur. Constants (K/H) and
floating point numbers (stored in double data registers D) can be used in any configuration. The
constants (K/H) will automatically be converted to the ‘floating point format’ for the operation.
Answers for an operation are stored (completely) in one pair of double (32 bits) data registers
and not 2 pairs (64 bits) as used in ‘Operation 1:’. The normal rules of algebra apply to floating
point multiplication.

MUL D0 D2 D4

S1 S2 D

X000

DMULP D0 K40 D4

X1000

S1 S2 D
M8023

M8023
M8000

TP03 Serial Programmable Controller Appiled instructions
4

 4-25

4.3.4 DIV (FNC 23)
Operands

Mnemonic Function
S1 S2 D

Program
steps

K, H, KnX, KnY,
KnM, KnS, T, C,
D, V, Z

KnY,KnM,KnS, T, C, D, Z(V)
Note: Z(V) may NOT be
used for 32 bit operation

DIV
FNC 23
(Division)

Divides one
source value by
another the
result is stored
in the
destination
device

When using M8023 to subtract floating point data,
only double word (32 bit) data registers (D) or
constants (K/H) may be used to perform

DIV,DIVP:
7steps

DDIV,
DDIVP:
13 steps

Operation 1:
The primary source (S1) is divided by the
secondary source (S2). The result is stored in the
destination (D). Note the normal rules of algebra
apply.

Points to note:
a) When operating the DIV instruction in 16bit mode, two 16 bit data sources are divided

into each other. They produce two 16 bit results. The device identified as the destination
address is the lower of the two devices used to store the these results.
This storage device will actually contain a record of the number of whole times S2 will
divide into S1 (the quotient).
The second, following destination register contains the remained left after the last whole
division (the remainder). Using the previous example with some test data:

51 (D0) ÷ 10 (D2) = 5(D4) 1(D5)
This result is interpreted as 5 whole divisions with 1 left over (5 × 10 + 1 = 51).

b) When operating the DIV instruction in 32 bit mode, two 32 bit data sources are divided
into each other. They produce two 32 bit results. The device identified as the destination
address is the lower of the two devices used to store the quotient and the following two
devices are used to store the remainder, i.e. if D30 was selected as the destination of 32
bit division operation then D30, D31 would store the quotient and D32, D33 would store
the remainder. If the location of the destination device is smaller than the obtained result,
then only the portion of the result which directly maps to the destination area will be
written. If bit devices are used as the destination area, no remainder value is calculated.

c) If the value of the source device S2 is 0 (zero) then an operation error is executed and the
operation of the DIV instruction is cancelled.

Operation 2:
This function is equivalent to FNC 123 EDIV. Theinformation regarding ‘Operation2:’ of the
MUL instruction apply similarly to this second operation of the DIV instruction (with the
exception of a division being performed instead of a multiplication). Again, only constants and
double data words can be manipulated with only DDIV, DDIVP instruction formats being valid.
Answers for an operation are stored (completely) in one pair of double (32 bits) data registers,
i.e. answers are not split in to quotient and remainder as in ‘Operation 1:’. The normal rules of
algebra apply to floating point division.

DIV D0 D2 D4

S1 S2 D

X000

TP03 Serial Programmable Controller Appiled instructions
4

 4-26

4.3.5 INC (FNC 24)
Operands

Mnemonic Function
D

Program steps

INC
FNC 24
(Increment)
★

The designated device is
incremented by 1 on every
execution of the instruction

KnY, KnM, KnS,
T, C, D, V, Z
Standard V,Z rules apply for 32
bit operation

INC,INCP:
3 steps
DINC, DINCP:
5 steps

Operation:
On every execution of the instruction, the device
specified as the destination D has its current value
incremented (increased) by a value of 1.
In 16 bit operation, when +32,767 is reached, the
next increment will write a value of -32,768 to the destination device.
In 32 bit operation, when +2,147,483,647 is reached the next increment will write a value of
-2,147,483,648 to the destination device.
In both cases there is no additional flag to identify this change in the counted value.

4.3.6 DEC (FNC 25)
Operands

Mnemonic Function
D

Program steps

DEC
FNC 25
(Decrement)
★

The designated device is
decremented by 1 on
every execution of the
instruction

KnY, KnM, KnS, T, C, D, V, Z
Standard V,Z rules apply for
32 bit operation

DEC,DECP:
3 steps
DDEC,DDECP:
5 steps

Operation:
On every execution of the instruction, the device
specified as the destination D has its current value
decremented (decreased) by a value of 1.
In 16 bit operation, when -32,768 is reached the next

 increment will write a value of +32,767 to the destination device.
In 32 bit operation, when -2,147,483,648 is reached the next increment will write a value of
+2,147,483,647 to the destination device.
In both cases there is no additional flag to identify this change in the counted value.

D

X000
INC D10

D

X001
DEC D10

TP03 Serial Programmable Controller Appiled instructions
4

 4-27

4.3.7 WAND (FNC 26)
Operands

Mnemonic Function
S1 S2 D

Program steps

WAND
FNC 26
(Logical
word AND)

A logical AND is
performed on the source
devices result stored at
destination

K, H, KnX, KnY,
KnM, KnS, T,
C, D, V, Z

KnY, KnM,
KnS, T, C, D,
V, Z

WAND,WANDP:
7 steps
DAND, DANDP:
13 steps

Operation:
The bit patterns of the two source devices
are analyzed (the contents of S2is
compared against the contents of S1). The
result of the logical AND analysis is stored in the destination device (D).
The following rules are used to determine the result of a logical AND operation. This takes
place for every bit contained within the source devices:
General rule: (S1) Bit n WAND (S2) Bit n = (D) Bit n
1 WAND 1 = 1 0 WAND 1 = 0
1 WAND 0 = 0 0 WAND 0 = 0

4.3.8 WOR (FNC 27)
Operands

Mnemonic Function
S1 S2 D

Program steps

WOR
FNC 27
(Logical
word OR)

A logical OR is
performed on the
source devices result
stored at destination

K,H, KnX,KnY,
KnM, KnS, T, C,
D, V, Z

KnY, KnM, KnS,
T, C, D, V, Z

WOR,WORP:
7 steps
DOR, DORP:
13 steps

Operation:
The bit patterns of the two source devices
are analyzed (the contents of S2is compared
against the contents of S1). The result of the
logical OR analysis is stored in the destination device (D).
The following rules are used to determine the result of a logical OR operation. This takes
place for every bit contained within the source devices:
General rule: (S1) Bit n WOR (S2) Bit n = (D) Bit n
1 WOR 1 = 1 0 WOR 1 = 1
1 WOR 0 = 1 0 WOR 0 = 0

X000
WAND D10 D12 D14

S1 S2 D

X001
WOR D10 D12 D14

S1 S2 D

TP03 Serial Programmable Controller Appiled instructions
4

 4-28

4.3.9 WXOR (FNC 28)
Operands

Mnemonic Function
S1 S2 D

Program steps

WXOR
FNC 28
(Logical
exclusive OR)

A logical XOR is
performed on the
source devices result
stored at destination

K,H,KnX,KnY,
KnM, KnS,
T, C, D, V, Z

KnY, KnM,
KnS,
T, C, D, V, Z

WXOR, WXORP:
7 steps
DXOR, DXORP:
13 steps

Operation:
The bit patterns of the two source devices
are analyzed (the contents of S2 is
compared against the contents of S1). The
result of the logical XOR analysis is stored in the destination device (D).
The following rules are used to determine the result of a logical XOR operation. This takes
place for every bit contained within the source devices:
General rule: (S1)Bit n WXOR (S2)Bit n = (D)Bit n

1 WXOR 1 = 0 0 WXOR 1 = 1
1 WXOR 0 = 1 0 WXOR 0 = 0

4.3.10 NEG (FNC 29)
Operands

Mnemonic Function
S1 S2 D

Program steps

NEG
FNC 29
(Negation)
★

Logically inverts
the contents of
the designated
device

K,H,
KnX,KnY, KnM, KnS,
T, C, D, V, Z

KnY, KnM,
KnS,
T, C, D, V, Z

NEG,NEGP:
3 steps
DNEG, DNEGP:
5 steps

Operation:
The bit pattern of the selected device is inverted.
This means any occurrence of a ‘1’ becomes a ‘0’ and
any occurrence of a ‘0’ will be written as a ‘1’.
When this is complete, a further binary 1 is added to the
bit pattern. The result is the total logical sign change of the selected devices contents, e.g.
a positive number will become a negative number or a negative number will become a
positive.

X001
WXOR D10 D12 D14

S1 S2 D

X000
NEG D10

D

TP03 Serial Programmable Controller Appiled Instruction 4

4.4 Rotation And Shift - Functions 30 to 39
Contents:
ROR - Rotation Right FNC 30
ROL - Rotation Left FNC 31
RCR - Rotation Right with Carry FNC 32
RCL - Rotation Left with Carry FNC 33
SFTR - (Bit) Shift Right FNC 34
SFTL - (Bit) Shift Left FNC 35
WSFR - Word Shift Right FNC 36
WSFL - Word Shift Left FNC 37
SFWR - Shift Register Write FNC 38
SFRD - Shift Register Read FNC 39
Symbols list:
D - Destination device.
S - Source device.
m, n- Number of active devices, bits or an operational constant.

Additional numeric suffixes will be attached if there are more than one operand with
the same function e.g. D1, S3 or for lists/tabled devices D3+0, S+9 etc.

MSB - Most Significant Bit, sometimes used to indicate the mathematical sign of a number,
i.e. positive = 0, and negative = 1.

LSB - Least Significant Bit.
Instruction modifications:
□□□ - An instruction operating in 16 bit mode, where □□□ identifies the instruction

mnemonic.
□□□P - A 16 bit mode instruction modified to use pulse (single) operation.
D□□□ - An instruction modified to operate in 32 bit operation.
D□□□P - A 32 bit mode instruction modified to use pulse (single) operation.

★ - A repetitive instruction which will change the destination value on every scan unless

modified by the pulse function.
☆ - An operand which cannot be indexed, i.e. The addition of V or Z is either invalid or will

have no effect to the value of the operand.

TP03 Serial Programmable Controller Appiled Instruction 4

4.4.1 ROR (FNC 30)

Operation:
The bit pattern of the destination device (D) is rotated n
bit places to the right on every operation of the
instruction.
The status of the last bit rotated is
copied to the carry flag M8022.
The example shown left is based on
the instruction noted above it, where
the bit pattern represents the contents
of D0.

Operands
Mnemonic Function

D n
Program steps

ROR
FNC 30
(Rotation right)
★

The bit pattern
of the
destination
device is rotated
‘n’ places to the
right on every
execution

KnY, KnM, KnS,
T, C, D, V, Z
Note:
16 bit operation
Kn=K4,
32 bit operation
Kn=K8

K, H,
☆
Note:
16 bit operation
n≤16
32 bit operation
n≤32

ROR, RORP:
5 steps

DROR,
DRORP:
9 steps

X000
ROR D0

D
K4
n

TP03 Serial Programmable Controller Appiled Instruction 4

4.4.2 ROL (FNC 31)

Operation:
The bit pattern of the destination device (D) is rotated n
bit places to the left on every operation of the instruction.

The status of the last bit rotated is copied to
the carry flag M8022.
The example shown left is based on the
instruction noted above it, where the bit pattern
represents the contents of D0.

Operands
Mnemonic Function

S D
Program steps

ROL
FNC 31
(Rotation left)
★

The bit pattern
of the
destination
device is rotated
‘n’ places to the
left on every
execution

KnY, KnM, KnS,
T, C, D, V, Z
Note:
16 bit operation
Kn= K4,
32 bit operation
Kn= K8

K, H,
☆
Note:
16 bit operation
n≤ 16
32 bit operation
n≤ 32

ROL, ROLP:
5 steps

DROL,
DROLP:
9 steps

X000
ROL D0

D
K4
n

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1

Carry
M8022 After 1 rotation

MSB

1 M8022 LSB

TP03 Serial Programmable Controller Appiled Instruction 4

4.4.3 RCR (FNC 32)

Operation:
The bit pattern of the destination device (D) is rotated n
bit places to the right on every operation of the
instruction.
The status of the last bit rotated is moved into the
carry flag M8022. On the following operation of the
instruction M8022 is the first bit to be moved back
into the destination device.
The example shown left is based on the instruction
noted above it, where the bit pattern represents the
contents of D0.

Operands
Mnemonic Function

D n
Program steps

RCR
FNC 32
(Rotation right
with carry)
★

The contents of
the destination
device are
rotated
right with 1 bit
extracted to the
carry flag

KnY, KnM, KnS,
T, C, D, V, Z
Note:
16 bit operation
Kn= K4,
32 bit operation
Kn= K8

K, H,
☆
Note:
16 bit operation
n≤ 16
32 bit operation
n≤ 32

RCR,RCRP:
5 steps
DRCR,
DRCRP:
9 steps

X000
RCR D0

D
K4
n

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0

Carry
M8022

0M8022

TP03 Serial Programmable Controller Appiled Instruction 4

4.4.4 RCL (FNC 33)

Operation:
The bit pattern of the destination device (D) is rotated n
bit places to the left on every operation of the instruction.
The status of the last bit rotated is moved into the
carry flag M8022. On the following operation of the
instruction M8022 is the first bit to be moved back
into the destination device.
The example shown left is based on the instruction
noted above it, where the bit pattern represents the
contents of D0.

Operands
Mnemonic Function

S D
Program steps

RCL
FNC 33
(Rotation left
with carry)
★

The contents of
the destination
device are
rotated
left with 1 bit
extracted to the
carry flag

KnY, KnM, KnS,
T, C, D, V, Z
Note:
16 bit operation
Kn= K4,
32 bit operation
Kn= K8

K, H,
☆
Note:
16 bit operation
n≤16
32 bit operation
n≤32

RCL, RCLP:
5 steps
DRCL,
DRCLP:
9 steps

X000
RCL D0

D
K4
n

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1

Carry
M8022

1 M8022

TP03 Serial Programmable Controller Appiled Instruction 4

4.4.5 SFTR (FNC 34)

Operation:
The instruction copies n2 source devices to a bit
stack of length n1. For every new addition of n2 bits,
the existing data within the bit stack is shifted n2

bits to the right. Any bit data moving to a position exceeding the n1 limit is diverted to an
overflow area. The bit shifting operation will occur every time the instruction is processed
unless it is modified with either the pulse suffix or a controlled interlock.

Operands
Mnemonic Function

S D n1 n2
Program steps

SFTR
FNC 34
(Bit shift right)
★

The status of the
source devices
are copied to a
controlled bit
stack moving
the existing data
to the right

X, Y, M, S Y, M, S K, H,
☆
Note:
n2≤n1≤1024

SFTR,SFTRP:
9 steps

X006
SFTR X0 M0 K16 K4

S D n1 n2

TP03 Serial Programmable Controller Appiled Instruction 4

4.4.6 SFTL (FNC 35)

Operation:
The instruction copies n2 source devices to a
bit stack of length n1. For every new addition of
n2 bits, the existing data within the bit stack is
shifted n2 bits to the left. Any bit data moving to
a position exceeding the n1 limit is diverted to an overflow area.
The bit shifting operation will occur every time the instruction is processed unless it is
modified with either the pulse suffix or a controlled interlock.

Operands
Mnemonic Function

S D N1 N2
Program steps

SFTL
FNC 35
(Bit shift left)
★

The status of the
source devices
are copied to a
controlled bit
stack moving
the existing
data to the left

X, Y, M, S Y, M, S K, H,
☆
Note:
n2≤n1≤1024

SFTL,SFTLP:
9 steps

X006
SFTL X10 Y0 K12 K3

S D n1 n2

TP03 Serial Programmable Controller Appiled Instruction 4

4.4.7 WSFR (FNC 36)

Operation:
The instruction copies n2 source devices to a word stack of length n1. For each addition of
n2 words, the existing data within the word stack is shifted n2 words to the right. Any word
data moving to a position exceeding the n1limit is diverted to an overflow area.
The word shifting operation will occur every time the instruction is processed unless it is
modified with either the pulse suffix or a controlled interlock.

Note: when using bit devices as source (S) and destination (D) the Kn value must be
equal.

Operands
Mnemonic Function

S D N1 N2
Program steps

WSFR
FNC 36
(Word shift
right)
★

The value of the
source devices
are copied to a
controlled word
stack moving
the existing data
to the right

KnX,
KnY,
KnM,KnS,
T, C, D

KnY,
KnM,KnS
T, C, D

K, H,
☆
Note:
n2 ≤n1 ≤512

SFTR,SFTRP:
9 steps

TP03 Serial Programmable Controller Appiled Instruction 4

4.4.8 WSFL (FNC 37)

Operation:
The instruction copies n2 source devices to a word stack of length n1. For each addition of
n2 words, the existing data within the word stack is shifted n2 words to the left. Any word
data moving to a position exceeding the n1 limit is diverted to an overflow area.
The word shifting operation will occur every time the instruction is processed unless it is
modified with either the pulse suffix or a controlled interlock.

WSFL D0 D10 K16
X000

K4

D25 D24 D23 D22 D21 D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 D10

D3 D2 D1 D0

2 3 4

5

1

①D25~D22→
②D21~D18→D25~D22
③D17~D14→D21~D18
④D13~D10→D17~D14
⑤D3~D0→D13~D10

Note: when using bit devices as source (S) and destination (D) the Kn value must be equal.

Operands
Mnemonic Function

S D N1 N2
Program steps

WSFL
FNC 37
(Word shift left)
★

The value of the
source devices
are copied to a
controlled word
stack moving
the existing data
to the left

KnX, KnY,
KnM,KnS,
T, C, D

KnY,KnM,
KnS,
T, C, D

K, H,
☆
Note:
n2≤n1≤512

WSFL,
WSFLP:
9 steps

TP03 Serial Programmable Controller Appiled Instruction 4

4.4.9 SFWR (FNC 38)

Operation:
The contents of the source device (S) are
written to the FIFO stack. The position of
insertion into the stack is automatically
calculated by the PLC.
The destination device (D) is the head address of the FIFO stack. The contents of D
identify where the next record will be stored (as an offset from D+1).If the contents of D
exceed the value “n-1” (n is the length of the FIFO stack) then insertion into the FIFO stack
is stopped. The carry flag M8022 is turned ON to identify this situation.
Points to note:
a) FIFO is an abbreviation for ‘First-In/ First-OUT’.
b) Although n devices are assigned for the FIFO stack, only n-1 pieces of information may

be written to that stack. This is because the head address device (D) takes the first
available register to store the information regarding the next data insertion point into the
FIFO stack.

c) Before starting to use a FIFO stack ensure that the contents of the head address
register (D) are equal to ‘0’ (zero).

d) This instruction should be used in conjunction with SFRD FNC 39. The n parameter in
both instructions should be equal.

Operands
Mnemonic Function

S D N
Program steps

SFWR
FNC 38
(Shift register
write)
★

This instruction
creates and
builds
a FIFO stack n
devices long
–must be used
with SFRD FNC
39

K, H,
KnX, KnY,
KnM,KnS,
T, C, D, V, Z

KnY, KnM,
KnS,
T, C, D,

K, H,
☆
Note:
2≤n1≤512

SFWR,
SFWRP:
7 steps

SFWR D0 D1 K10
X000

D10 D9 D8 D7 D6 D5 D4 D3 D2 D1D0

S D n

123

S N=10

TP03 Serial Programmable Controller Appiled Instruction 4

4.4.10 SFRD (FNC 39)

Operation:
The source device (S) identifies the
head address of the FIFO stack. Its
contents reflect the last entry point of
data on to the FIFO stack, i.e. where
the end of the FIFO is (current
position).
This instruction reads the first piece of data from the FIFO stack (register S+1), moves all of
the data within the stack ‘up’ one position to fill the read area and decrements the contents
of the FIFO head address (S) by 1. The read data is written to the destination device (D).
When the contents of the source device (S) are equal to ‘0’ (zero), i.e. the FIFO stack is
empty, and the flag M8020 is turned ON.
Points to note:
a) FIFO is an abbreviation for ‘First-In/ First-OUT’.
b) Only n-1 pieces of data may be read from a FIFO stack. This is because the stack

requires that the first register, the head address (S) is used to contain information about
the current length of the FIFO stack.

c) This instruction will always read the source data from the register S+1.
d) This instruction should be used in conjunction with SFWR FNC 38. The n parameter in

both instructions should be equal.

Operands
Mnemonic Function

S D N
Program steps

SFRD
FNC 39
(Shift register
read)
★

This instruction
reads and
reduces FIFO
stack- must be
used with SFWR
FNC 38

KnY, KnM,
KnS,
T, C, D,

KnY, KnM,
KnS,
T, C, D,
V, Z

K, H,
☆
Note:
2 ≤n ≤512

SFRD,
SFRDP:
7 steps

SFRD D1 D20 K10
X000

D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D20

S D n

DN=10

TP03 Serial Programmable Controller Appiled Instruction 4

4.5 Data Operation - Functions 40 to 49
Contents:
ZRST - Zone Reset FNC 40
DECO - Decode FNC 41
ENCO - Encode FNC 42
SUM - The Sum Of Active Bits FNC 43
BON - Check Specified Bit Status FNC 44
MEAN - Mean FNC 45
ANS - (Timed) Annunciator Set FNC 46
ANR - Annunciator Reset FNC 47
SQR - Square Root FNC 48
FLT - Float, (Floating Point) FNC 49
Symbols list:
D - Destination device.
S - Source device.
m, n- Number of active devices, bits or an operational constant.

Additional numeric suffixes will be attached if there are more than one operand with
 the same function e.g. D1, S3 or for lists/tabled devices D3+0, S+9 etc.

MSB - Most Significant Bit, sometimes used to indicate the mathematical sign of a number,
i.e.

positive = 0, and negative = 1.
LSB - Least Significant Bit.
Instruction modifications:
□□□ - An instruction operating in 16 bit mode, where □□□ identifies the instruction

mnemonic.
□□□P - A 16 bit mode instruction modified to use pulse (single) operation.
D□□□ - An instruction modified to operate in 32 bit operation.
D□□□P - A 32 bit mode instruction modified to use pulse (single) operation.

★ - A repetitive instruction which will change the destination value on every scan unless

modified by the pulse function.
☆ - An operand which cannot be indexed, i.e. the addition of V or Z is either invalid or will

have no effect to the value of the operand.

TP03 Serial Programmable Controller Appiled Instruction 4

4.5.1 ZRST (FNC 40)

Operation:
The range of devices, inclusive of those specified
as the two destinations are reset, i.e. for data
devices the current value is set to 0 (zero) and for
bit elements, the devices are turned OFF, i.e. also set to 0 (zero).
The specified device range cannot contain mixed device types, i.e. C000 specified as the
first destination device (D1) cannot be paired with T199 as the second destination device
(D2). When resetting counters, standard and high speed counters cannot be reset as part
of the same range.
If D1 is greater than (>) D2 then only device D1 is reset.

4.5.2 DECO (FNC 41)

Operation:
Source data is provided by a combination of
operands S and n. Where S specifies the
head address of the data and n, the number
of consecutive bits. The source data is read
as a single number (binary to decimal
conversion) Q. The source number Q is the
location of a bit within the destination device
(D) which will be turned ON (see example
opposite). When the destination device is a
data device n must be within the range 1 to 4 as there are only 16 available destination bits
in a single data word. All unused data bits within the word are set to 0.

Operands
Mnemonic Function

D1 D2
Program steps

ZRST
FNC 40
(Zone
Reset)

Used to reset a
range of like
devices in one
operation

Y, M,S,
T, C, D
Note:
D1must be less than or equal (≤) to D2.
Standard and High speed counters
cannot be mixed

ZRST,
ZRSTP:
5 steps

Operands
Mnemonic Function

S D N
Program

steps
DECO
FNC 41
(Decode)

Source data value
Q identifies the
Qth bit of the
destination device
which will be
turned ON

K, H,
X, Y,
M,S,
T, C, D,
V,Z

Y, M,
S,
T, C, D

K, H,
☆Note:
D= Y,M,S then n range =
1-8
D= T,C,D then
n range = 1-4
n= 0, then no processing

DECO,
DECOP:
7 steps

ZRST M500 M599
M8002 D1 D2

DECO X0 M10 K3
X004

S D n

0 0 0 0 1 0 0 0
M17 M16 M15M14 M13 M12 M11M10

7. 6. 5. 4. 3. 2. 1. 0.

0 1 1
4 2 1
 +
 =3

TP03 Serial Programmable Controller Appiled Instruction 4

4.5.3 ENCO (FNC 42)

Operation:
The highest active bit within the
readable range has its location noted as
a numbered offset from the source head
address (S). This is stored in the
destination register (D).

Points to note:
a) The readable range is defined by the

largest number storable in a binary
format within the number of
destination storage bits specified by n, i.e. if n was equal to 4 bits a maximum number
within the range 0 to 15 can be written to the destination device. Hence, if bit devices
were being used as the source data, 16 bit devices would be used, i.e. the head bit
device and 15 further, consecutive devices.

b) If the stored destination number is 0 (zero) then the source head address bit is ON, i.e.
the active bit has a 0 (zero) offset from the head address. However, if NO bits are ON
within the source area, 0 (zero) is written to the destination device and an error is
generated.

c) When the source device is a data or word device n must be taken from the range 1 to 4
as there are only 16 source bits available within a single data word.

Operands
Mnemonic Function

S D N
Program

steps
ENCO
FNC 42
(Encode)

Then location of
the highest active
bit is stored as a
numerical position
from the head
address

X, Y, M,
S,
T, C, D,
V, Z

T, C,
D, V,Z

K, H,
☆ Note:
S=X, Y, M, S then
n range=1-8
S= T,C,D then
n range = 1-4
n = 0, then no processing:

ENCO,
ENCOP
7 steps

ENCO M10 D10 K3
X005

S D n

0 0 0 0 1 0 0 0
M17 M16 M15M14 M13 M12 M11M10

7. 6. 5. 4. 3. 2. 1. 0.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
D10

. . 4 2 1
+

=3

TP03 Serial Programmable Controller Appiled Instruction 4

4.5.4 SUM (FNC 43)

Operation:
The number of active (ON) bits within the
source device (S), i.e. bits which have a value
of “1" are counted. The count is stored in the
destination register (D). If a double word format
is used, both the source and destination
devices use 32 bit, double registers. The
destination device will always have its upper 16
bits set to 0 (zero) as the counted value can
never be more than 32.
If no bits are ON then zero flag, M8020 is set.

4.5.5 BON (FNC 44)

Operation:
A single bit position (n) is specified from within a
source device/area (S). n could be regarded as a
specified offset from the source head address (S),
i.e. 0 (zero) being the first device (a 0 offset)
where as an offset of 15 would actually be the
16th device. If the identified bit becomes active,
i.e. ON, the destination device (D) is activated to
“flag” the new status.
The destination device could be said to act as a

mirror to the status of the selected bit source.

Operands
Mnemonic Function

S D
Program steps

SUM
FNC 43
(Sum of
active bits)

The number (quantity) of
active bits in the source
data is stored in the
destination device

K, H,
KnX, KnY,
KnM, KnS,
T, C, D, V, Z

KnY, KnM,
KnS,
T, C, D, V,
Z

SUM,SUMP:
7 steps
DSUM,DSUMP:
9 steps

Operands
Mnemonic Function

S D n
Program steps

BON
FNC 44
(Check
specified
bit status)

The status of the
specified bit in the
source device is
indicated at the
destination

K, H,
KnX, KnY,
KnM, KnS,
T, C, D, V,
Z

Y, M, S K,H,
☆Note:
16 bit operation
n=0 to 15
32 bit operation
n=0 to 31

BON, BONP:
7steps
DBONP,DBON:
13 steps

SUM D2
X000

S D

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
D2

8 4 2 1

D0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1
D0

b15 b0

X000 S D

0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

b15=1,M0=1

b15=0,M0=0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
D10

b15 b0

BON D10 M0 K15
n

TP03 Serial Programmable Controller Appiled Instruction 4

4.5.6 MEAN (FNC 45)

Operation:
The range of source data is defined by operands
Sand n. S is the head address of the source data
and n specifies the number of consecutive source
devices used.
The value of all the devices within the source range
is summed and then divided by the number of
devices summed, i.e. n. This generates an integer
mean value which is stored in the destination
device (D). The remainder of the calculated mean
is ignored.

Points to note:
If the source area specified is actually smaller than the physically available area, then only
the available devices are used. The actual value of n used to calculate the mean will reflect
the used, available devices. However, the value for n which was entered into the instruction
will still be displayed. This can cause confusion as the mean value calculated manually
using this original n value will be different from that which is displayed.
If the value of nis specified outside of the stated range (1 to 64) an error is generated.

4.5.7 ANS (FNC 46)

Operation:
This instruction, when energized, starts
a timer (S) for n, 100 msec. When the
timer completes its cycle the assigned
annunciator (D) is set ON.
If the instruction is switched OFF during or after completion of the timing cycle the timer is
automatically reset. However, the current status of the annunciator coil remains
unchanged.

Operands
Mnemonic Function

S D n
Program steps

MEAN
FNC 45
(Mean)

Calculates the
mean of a range
of devices

KnX, KnY,
KnM, KnS,
T, C, D

KnY, KnM,
KnS,
T, C, D, V, Z

K,H,
☆Note:
n=1 to 64

MEAN,MEANP:
7 steps
DMEAN,DMEANP:
13steps

Operands
Mnemonic Function

S D n
Program

steps
ANS
FNC 46
(Timed
annunciator
set)

This instruction starts
a timer. Once timed
out the selected
annunciator flag is set
ON

T
Note:
available
range
T0 to T199

S
Note:
annunciator
range S900
to S999

K,H,
☆Note：
n range 1 to
32,767 – in units
of 100msec

ANS:
7 steps

MEAN

S D n

D0 D10 K3

∑S
Sn

S0
n

 (S0+S1+...SN)

n

General rule

(D0+D1+D3)

3

Example

D10=

D= =

ANS T0 K 10 S900
X1X0

S n D

TP03 Serial Programmable Controller Appiled Instruction 4

4.5.8 ANR (FNC 47)

Operation:
Annunciators which have been activated are

 sequentially reset one-by-one, each time the ANR
 instruction is operated. If the ANR instruction is driven
continuously it will carry out its resetting operation on every program scan unless it is
modified by the pulse, P prefix or by a user defined program interlock.

4.5.9 SQR (FC 48)

Operation1:
This instruction performs a square root operation on
source data (S) and stores the result at destination device
(D). The operation is conducted entirely in whole integers
rendering the square root answer rounded to the lowest
whole number. For example, if (S) = 154, then (D) is
calculated as being 12. M8020 is set ON when the square
root operation result is equal to zero.
Answers with rounded values will activate M8021.

General notes:
Performing any square root operation (even on a calculator) on a negative number will result
in an error. This will be identified by special M coil M8067 being actived:

 168− =Error and M8067 will be set ON

This is true for both operation modes.

4.5.10 FLT (FNC 49)

Operands
Mnemonic Function

D
Program steps

ANR
FNC 47
(Annunciator
reset)
★

The lowest active annunciator
is reset on every operation of
this instruction

N/A ANR,ANRP:
1step

Operands
Mnemonic Function

S D
Program steps

SQR
FNC 48
(Square root)

Performs a
mathematical
square root e.g

D= S

K,H,D D

SQR, SQRP:
5 steps
DSQR,DSQRP:
9 steps

X003
ANR

X003 X010
SQR K5 D2

S D

X007
M8023

DSQR D5 D30

M8023

TP03 Serial Programmable Controller Appiled Instruction 4

Operation 1:
When the float instruction is used without the float flag
(M8023 = OFF) the source data (S) is converted in to an
equivalent value stored in float format at the destination
device (D). Please note that two consecutive devices (D
and D+1) will be used to store the converted float number.
This is true regardless of the size of the source data (S),
i.e. whether (S) is a single device (16 bits) or a double
device (32 bits) has no effect on the number of devices
(D) used to store the floating point number. Examples:

Decimal source data (S) Floating point destination value (D)
1 1
-26700 -2.67 × 104
404 4.04 × 102

Operation 2: This function is equivalent to FNC 129 INT.
When the float instruction is performed and the float flag M8023 is ON, the float operation
will be conducted in reverse to Operation 1. Any floating point format number stored at
source (S) will be converting to its decimal equivalent and stored at destination (D).

Points to Note:
a) When floating point numbers are used the zero, borrow and carry flags (M8020, M8021

and M8022 respectively) operate at the following times; M8020, Zero: is activated when
the result is Zero.
M8021, Borrow: is activated when the result is smaller than the smallest possible
number.
The result is forced to equal the smallest number and the associated flag is set ON.
M8022, Carry: is
activated when the
result is larger than
the largest possible
number. The result is
forced to equal the
largest number and
the associated flag is

Operands
Mnemonic Function

S D
Program steps

FLT
FNC 49
(Floating point)

Used to convert data
to and from floating
point format

D

FLT, FLTP:
5 steps
DFLT,DFLTP:
9 steps

X015
FLT D15 D2

S D

X027
M8023

FLT D100 D120

M8000
M8023

Positive Value Very

Carry
M8022

Borrow
M8021

Infinity

small Positive Value

Carry
M8022

Zero M8020 Infinity

TP03 Serial Programmable Controller Appiled Instruction 4

set ON.
b) Floating point numbers always occupy 32 onsecutive bits, i.e. 2 consecutive data

registers. When converting between float and decimal numbers please al-low enough
destination devices, i.e.

Instruction
Double word

operation
Status of
M8023

Number of
source

registers(S)

Number of
destinaation
registers(S)

Remark

FLT OFF 1(S) 2(D,D+1) Convert to floating point
FLT(INT)

NO
ON 2(S,S+1) 1(D) Convert to decimal

DFLT OFF 2(S,S+1) 2(D,D+1) Convert to floating point
DFLT(DINT)

YES
ON 2(S,S+1) 2(D,D+1) Convert to decimal

TP03 Serial Programmable Controller Applied Instruction 4

4.6 High Speed Processing - Functions 50 to 59
Contents:
REF - Refresh FNC 50
MTR - Input matrix FNC 52
HSCS - High speed counter set FNC 53
HSCR - High speed counter reset FNC 54
HSZ - High speed counter zone compare FNC 55
SPD - Speed detect FNC 56
PLSY - Pulse Y output FNC 57
PWM - Pulse width modulation FNC 58
PLSR - Ramp Pulse output FNC 59
Symbols list:
D - Destination device.
S - Source device.
m, n- Number of active devices, bits or an operational constant.

Additional numeric suffixes will be attached if there are more than one operand with the
same function e.g. D1, S3 or for lists/tabled devices D3+0, S+9 etc.

MSB - Most Significant Bit, sometimes used to indicate the mathematical sign of a number, i.e.
positive = 0, and negative = 1.

LSB - Least Significant Bit.
Instruction modifications:
□□□ - An instruction operating in 16 bit mode, where □□□ identifies the instruction

mnemonic.
□□□P - A 16 bit mode instruction modified to use pulse (single) operation.
D□□□ - An instruction modified to operate in 32 bit operation.
D□□□P - A 32 bit mode instruction modified to use pulse (single) operation.

★- A repetitive instruction which will change the destination value on every scan unless

modified by the pulse function.
☆ -An operand which cannot be indexed, i.e. The addition of V or Z is either invalid or will

have no effect to the value of the operand.

TP03 Serial Programmable Controller Applied Instruction 4

4.6.1 REF (FNC 50)

Operation:
Standard PLC operation processes output and input
status between the END instruction of one program
scan and step 0 of the following program scan. If an
immediate update of the I/O device status is required the REF instruction is used. The REF
instruction can only be used to update or refresh blocks of 8 (n) consecutive devices. The
head address of the refreshed devices should always have its last digit as a 0 (zero), i.e. in
units of 10.
Note: A short delay will occur before the I/O device is physically updated, in the case of
inputs a time equivalent to the filter setting, while outputs will delay for their set energized
time

.
4.6.2 MTR (FNC 52)

Operation:
This instruction allows a selection of 8
consecutive input devices (head address
S) to be used multiple (n) times, i.e. each
physical input has more than one,
separate and quite different (D1) signal being processed. The result is stored in a
matrix-table (head address D2).
Points to note:
a) The MTR instruction involves high speed input/output switching. For this reason this

instruction is only recommended for use with transistor output modules.
b) For the MTR instruction to operate correctly, it must be driven continuously. It is

recommended that special auxiliary relay M8000, the PLC RUN status flag, is used.

Operands
Mnemonic Function

D n
Program

steps
REF
FNC 50
(Refresh)
★

Forces an
immediate update
of inputs or outputs
as specified

X, Y , ☆
Note:
D should always be a
multiple of 10, i.e. 00,
10, 20, 30 etc.

K, H, ☆
Note:
n should always be a
multiple of 8, i.e. 8,
16, 24, 32 etc

REF, REFP:
5 steps

Operands
Mnemonic Function

S D1 D2 n
Program

steps
X
☆

Y
☆

Y,M,S
☆

MTR FNC 52
(Input matrix)

Multiplexes a
bank of inputs
into a number of
sets of devices.
Can only be used
ONCE

Note:
These operands should always be a
multiple of 10, i.e. 00, 10, 20, 30 etc.

K,H
☆
Note:
n=2 to 8

MTR: 9
steps

REF X10 K8

D n

X000

s

M8000
MTR X10 Y20 M30 K3

D1 D2 n

TP03 Serial Programmable Controller Applied Instruction 4

After the completion of the first full reading of the matrix, operation complete flag
M8029 is turned ON. This flag is automatically reset when the MTR instruction is turned
OFF.

c) Each set of 8 input signals are grouped into a ‘bank’ (there are n number of banks).
d) Each bank is triggered/selected by a dedicated output (head address D1). This means

the quantity of outputs from D1, used to achieve the matrix are equal to the number of
banks n.

As there are now additional inputs entering the PLC these will each have a status which
needs recording. This is stored in a matrix-table. The matrix-table starts at the head
address D2. The matrix construction mimics the same 8 signal by n bank configuration.
Hence, when a certain input in a selected bank is read, its status is stored in an
equivalent position within the result matrix-table.

e) The matrix instruction operates on an interrupt format, processing each bank of inputs
every 20msec. This time is based on the selected input filters being set at 10msec. This
wouldresultinan8bankmatrix, i.e. 64inputs(8inputs´8banks) beingreadin160msec.

If high speed inputs (ex. X0) are
specified for operand S, the
reading time of each bank
becomes only 10msec, i.e. a
halving of the reading speed.
However, additional pull down
resistors are required on the
drive outputs to ensure the high
speed reading does not detect
any residual currents from the
last operation.
These should be placed in parallel
to the input bank and should be of
a value of approximately 3.3kΩ,
0.5W. For easier use, high speed
inputs should not be specified at
S.

f) Because this instruction uses a
series of multiplexed signals it
requires a certain amount of ‘hard
wiring’ to operate. The example
wiring diagram to the right depicts
the circuit used if the previous
example instruction was
programmed. As a general
precaution to aid successful
operation diodes should be
places after each input device

0V S/S X0 X1 X2 X3 X4 X5 X6 X724V

+V Y40 Y41 Y42 Y43 Y44 Y45 Y46 Y47

Matrix device

Pull down resistors

Transistor output unit
(Source)

0V S/S X10 X11 X12 X13 X14 X15 X16 X1724V

+V Y20 Y21 Y22 Y23 Y24 Y25 Y26 Y27

Diode
0.1A,50V

Input
devices

TP03 Serial Programmable Controller Applied Instruction 4

(see diagram opposite). These should have a rating of 0.1A, 50V.
g) Example Operation

When output Y20 is ON only those inputs in the first bank are read. These results are
then stored; in this example, auxiliary coils M30 to M37. The second step involves Y20
going OFF and Y21 coming ON. This time only inputs in the second bank are read.
These results are stored in devices M40 to M47. The last step of this example has Y21
going OFF and Y22 coming ON. This then allows all of the inputs in the third bank to be
read and stored in devices M50 to M57. The processing of this instruction example
would take 20X3 = 60msec.

4.6.3 HSCS (FNC 53)

Operation:
The HSCS set, compares the current value of
the selected high speed counter (S2) against
a selected value (S1). When the counters
current value changes to a value equal to
S1the device specified as the destination
(D)is set ON. The example above shows that Y10 would be set ON only when C253’s
value stepped from 99-100 OR 101-100. If the counters current value was forced to equal
100, output Y10 would NOT be set ON.
Points to note:
a) It is recommended that the drive input used for the high speed counter functions;

HSCS,HSCR, HSCZ is the special auxiliary RUN contact M8000.
b) If more than one high speed counter function is used for a single counter the selected

flag devices (D) should be kept within 1 group of 8 devices, i.e. Y0-7, M10-17.
c) All high speed counter functions use an interrupt process, hence, all destination

devices (D) are updated immediately.
Use of interrupt pointers
Can use interrupt pointers I010 through I060 (6 points) as destination devices (D). This
enables interrupt routines to be triggered directly when the value of the specified high
speed counter reaches the value in the HSCS instruction.

Operands
Mnemonic Function

S1 S2 D
Program

steps
HSCS
FNC 53
(High
speed
counter set)

Sets the selected
output when the
specified high speed
counter value equals
the test value

K, H,
KnX, KnY,
KnM, KnS,
T, C, D, Z

C
Note:
C = 235 to
249,251to 254

Y, M, S
Interrupt
pointers
I010 to I060
can be set

DHSCS:
13 steps

DHSCS K100 C253 Y10

S1 S2 D

M8000

TP03 Serial Programmable Controller Applied Instruction 4

4.6.4 HSCR (FNC 54)

Operation:
The HSCR, compares the current value of the
selected high speed counter (S2) against a
selected value (S1). When the counters current
value changes to a value equal to S1, the device
specified as the destination (D) is reset. In the
example above, Y10 would be reset only when C253’s value stepped from 199 to 200 or
from 201 to 200. If the current value of C253 was forced to equal 200 by test techniques,
output Y10 would NOT reset.
For further, general points, about using high speed counter functions, please see the
subsection ‘Points to note’ under the HSCS (FNC 53). Relevant points are; a, b, and c.
Please also reference the note about the number of high speed instructions allowable.

4.6.5 HSZ (FNC 55)

Operation 1 - Standard:
This instruction works in exactly the
same way as the standard ZCP
(FNC11). The only difference is that the
device being compared is a high speed
counter (specified as S3).
Also, all of the outputs (D) are updated immediately due to the interrupt operation of the
DHSZ. It should be remembered that when a device is specified in operand D it is in fact a
head address for 3 consecutive devices. Each one is used to represent the status of the
current comparison, i.e. using the above example as a basis,

Operands
Mnemonic Function

S1 S2 D
Program

steps
HSCR
FNC 54
(High
speed
counter
reset)

Resets the selected
output when the
specified high
speed counter
equals the test
value

K, H,
KnX, KnY,
KnM,
KnS,
T, C, D, Z

C
Note:
C = C235 to
C249,C251to C254

Y, M, S,C
Note:
If C, use same
counter as S1

DHSCR:
13 steps

Operands
Mnemonic Function

S1 S2 S3 n
Program

steps
HSZ
FNC 55
(High
speed zone
compare)

Operation 1:
The current value of a
high speed counter is
checked against a
specified range

K, H,
KnX, KnY,
KnM, KnS,
T, C, D, Z

S1≤ S2

C
Note:
C = 235
to249 ,
C251 to
C253

Y, M, S
Note:
3 consecutive
devices are
used

DHSZ:
17 steps

DHSCR K200 C253 Y10

S1 S2 D

M8000

DHSZ K1000 K1200 C251

S1 S2 D

M8000
Y10

S3

TP03 Serial Programmable Controller Applied Instruction 4

Y10 (D) C251 is less than S1, K1000 (S3< S1)

Y11 (D+1) C251 is greater than or equal S1, K1000 but less than or equal S2, K1200
(S3≥ S1, S3≤S2)

Y12 (D+2) C251 is greater than S2, K1200 (S3> S2)

For further, general points, about using high speed counter functions please see the
subsection ‘Points to note’ under the HSCS (FNC 52). Relevant points are; a, b, and c.
Please also reference the note about the number of high speed instructions allowable

4.6.6 SPD (FNC 56)

Operation:
The number of pulses received at S1 are
counted and stored in D+1; this is the
current count value.
The counting takes place over a set time
frame specified by S2 in msec. The time
remaining on the current ‘timed count’, is
displayed in device D+2.
The numbers of counted pulses (of S1)
from the last timed count are stored in D.
The timing chart opposite shows the SPD
operation in a graphical sense. Note:
Current count value, device D+1

Accumulated/ last count value, device D
Current time remaining in msec, device
D+2

Points to note:
a) When the timed count frame is

completed the data stored in D+1 is
immediately written to D. D+1 is then reset and a new time frame is started.

b) Because this is both a high speed and an interrupt process only inputs X0 to X5 may be
used as the source device S1. However, the specified device for S1 must NOT coincide
with any other high speed function which is operating, i.e. a high speed counter using
the same input. The SPD instruction is considered to act as a single phase counter.

Operands
Mnemonic Function

S1 S2 D
Program

steps
SPD
FNC 56
(Speed
detection)

Detects the number
of ‘encoder’ pulses in
a given time frame.
Results can be used
to calculate speed

X0 to
X5

K, H, KnX,
KnY,
KnM, KnS,
T, C, D, V,
Z
Unit is
msec

T, C, D, Z (V)
Note:
3 consecutive devices
are used. In the case
of D= Z monitor D8028,
D8029 and D8030

SPD:
7 steps

100

100ms 100ms

D0D1

X010

X000

D2

SPD X000 K100 D0
X010 S1 S2 D

TP03 Serial Programmable Controller Applied Instruction 4

c) Multiple SPD instructions may be used, but the identified source devices S1 restrict this
to a maximum of 6 times.

d) Once values for timed counts have been collected, appropriate speeds can be
calculated using simple mathematics. These speeds could be radial speeds in rpm,
linear speeds in M/min it is entirely down to the mathematical manipulation placed on
the SPD results. The following interpretations could be used;

 Where n = the number of linear encoder divisions per kilometer

Where n = the number of encoder pulses per revolution of the encoder disk.

.

TP03 Serial Programmable Controller Applied Instruction 4

4.6.7 PLSY (FNC 57)

Operation:
A specified quantity of pulses S2 is output
through device D at a specified frequency S1.
This instruction is used in situations where the
quantity of outputs is of primary concern.

Points to note:

a) The maximum frequency:
16 bit: 1~321767 Hz
32 bit: 1~100000 HZ

b) The maximum number of pulses: 16 bit operation:
1 to 32,767 pulses, 32 bit operation: 1 to
2,147,483,647 pulses.
Note: special auxiliary coil M8029 is turned ON when the specified number of pulses
has been completed. The pulse count and completion flag (M8029) are reset when the
PLSY instruction is de-energized. If “0" (zero) is specified the PLSY instruction will
continue generating pulses for as long as the instruction is energized.

c) A single pulse is described as having a 50% duty cycle. This means it is ON for 50% of
the pulse and consequently OFF for the remaining 50% of the pulse. The actual output
is controlled by interrupt handling, i.e. the output cycle is NOT affected by the scan time
of the program.

d) The data in operands S1 and S2 may be changed during execution. However, the new
data in S2 will not become effective until the current operation has been completed, i.e.
the instruction has been reset by removal of the drive contact.

e) This instruction can only be used once within a program scan. Also, only one of either
FNC57 PLSY or FNC 59 PLSR can be in the active program at once. It is possible to
use subroutines or other such programming techniques to isolate different instances of
these instructions. In this case, the current instruction must be deactivated before
changing to the new instance

f) Because of the nature of the high speed output, transistor output units should be used
with this instruction. Relay outputs will suffer from a greatly reduced life and will cause
false outputs to occur due to the mechanical ‘bounce’ of the contacts. To ensure a
‘clean’ output signal when using transistor units, the load current should be 200mA or
higher. It may be found that ‘pull up’ resistors will be required.

g) User can use the HSZ (FNC 55) instruction with the PLSY instruction when source
device S1 is set to D8132. Please see page 5-59 for more details.

Operands
Mnemonic Function

S1 S2 D
Program steps

PLSY FNC 57
(Pulse Y output)

Outputs a specified
number of pulses at
a set frequency

K, H, KnX,
KnY,
KnM, KnS, T,
C, D, V, Z

Y
Y000，Y001
only

PLSY: 7 steps
DPLSY: 13steps

PLSY K1000 D0 Y0

S1 S2 D

X010

PLSY S1 S2 D
M8002

M8034

M8002

TP03 Serial Programmable Controller Applied Instruction 4

4.6.8 PWM (FNC 58)

Operation:
A continuous pulse train is output through
device D when this instruction is driven. The
characteristics of the pulse are defined as:
The distance, in time (msec), between two
identical parts of consecutive pulses (S2).
And how long, also in time (msec), a single
pulse will be active for (S1).
Points to note:
a) Because this is a 16 bit instruction, the available time ranges for S1 and S2 are 1 to

3000.
b) A calculation of the duty cycle is easily made by dividing S1 by S2. Hence S1 cannot

have a value greater than S2 as this would mean the pulse is on for longer than the
distance between two pulses, i.e. a second pulse would start before the first had
finished. If this is programmed an error will occur.
This instruction is used where the length of the pulse is the primary concern.

c) The PWM instruction may only be used once in a users program.
d) Because of the nature of the high speed output, transistor output units should be used

with this instruction. Relay outputs will suffer from a greatly reduced life and will cause
false outputs to occur due to the mechanical ‘bounce’ of the contacts. To ensure a
‘clean’ output signal when using transistor units, the load current should be 200mA or
higher. It may be found that ‘pull up’ resistors will be required.

Operands
Mnemonic Function

S1 S2 D
Program

steps
PWM
FNC 58
(Pulse width
modulation)

Generates a
pulse train with
defined pulse
characteristics

K, H, KnX, KnY, KnM, KnS,
T, C, D, V, Z
Note:
S1≤ S2

Y:
Y000，Y001
only

PWM:
7 steps

PWM

S2

K50 Y0
X010

S1

D10

D

S1

S2
D

TP03 Serial Programmable Controller Applied Instruction 4

4.6.9 PLSR (FNC 59)

Operation:
A specified quantity of pulses S2 is output
through device D. The output frequency is first
ramped up in 10 steps to the maximum
frequency S1 in acceleration time S3 ms, then
ramped down to stop also in S3 ms. This instruction is used to generate simple
acceleration/deceleration curves where the quantity of outputs is of primary concern.

Points to Note:

a) Users may use frequencies of 10 to 100,000Hz. The frequency should be set to a
multiple of 10. If not it will be rounded up to the next multiple of 10.
The acceleration and deceleration steps are set to 1/10 of the maximum frequency.
Take this in to consideration to prevent slipping, when using stepping motors.

b) The maximum number of pulses: 16 bit operation: 110 to 32,767 pulses, 32 bit
operation: 110 to 2,147,483,647 pulses.
Correct pulse output can not be guaranteed for a setting of 110.

c) The acceleration time must conform to the limitations described on the next page.
d) The output device is limited to Y0 or Y1 only and should be transistor type.
e) This instruction can only be used once within a program scan. Also, only one of

either FNC 57 PLSY or FNC 59 PLSR can be in the active program at once.
It is possible to use subroutines or other such programming techniques to isolate
different instances of this instruction. In this case, the current instruction must be
deactivated before changing to the new instance.

f) If the number of pulses is not enough to reach the maximum frequency then the
frequency is automatically cut

g) Special auxiliary coil M8029 turns ON when the specified number of pulses has
been completed. The pulse count and completion flag (M8029) are reset when the

Operands
Mnemonic Function

S1 S2 S3 D
Program

steps
PLSR
FNC 59
(Pulse
ramp)

Outputs a specified
number of pulses,
ramping up to a
set frequency and
back down to stop

K, H,KnX, KnY, KnM, KnS,
T, C, D, V, Z

Y:
Y000，Y001
only

PLSR:
9 steps
DPLSR:
17 steps

PLSR

S1

D0 K3600 Y00K500

S2 S3 D

M54

TP03 Serial Programmable Controller Applied Instruction 4

PLSR instruction is de-energized.

Acceleration time limitations
The acceleration time S3 has a maximum limit of 5000 ms. However, the actual limits of
S3are determined by other parameters of the system according to the following 4 points.
1) Set S3 to be more than 10 times the maximum program scan time (D8012).

If set to less than this, then the timing of the acceleration steps becomes uneven.

2) The following formula gives the minimum value for S3.
3) The following formula gives the maximum value for S3.

4) The pulse output always increments in 10 step up to the maximum frequency as

shown on the previous page.
If the parameters do not meet the above conditions, reduce the size of S1.

 Possible output frequency is limited to 10 to 100,000 Hz. If either the maximum
frequency or the acceleration step size are outside this limit then they are
automatically adjusted to bring the value back to the limit.

 If the drive signal is switch off, all output stops. When driven ON again, the
process starts from the beginning.

 Even if the operands are changed during operation, the output profile does not
change. The new values take effect from the next operation.

TP03 Serial Programmable Controller Applied Instruction 4

4.7 Handy Instructions - Functions 60 to 69
Contents:
IST - Initial State FNC 60
SER - Search FNC 61
ABSD - Absolute Drum FNC 62
INCD - Incremental Drum FNC 63
TTMR - Teaching Timer FNC 64
STMR - Special Timer - Definable FNC 65
ALT - Alternate State FNC 66
RAMP - Ramp - Variable Value FNC 67
ROTC - Rotary Table Control FNC 68
SORT - Sort Data FNC 69
Symbols list:
D - Destination device.
S - Source device.
m, n- Number of active devices, bits or an operational constant.

Additional numeric suffixes will be attached if there are more than one operand with the
same function e.g. D1, S3 or for lists/tabled devices D3+0, S+9 etc.

MSB - Most Significant Bit, sometimes used to indicate the mathematical sign of a number, i.e.
positive = 0, and negative = 1.

LSB - Least Significant Bit.
Instruction modifications:
□□□ - An instruction operating in 16 bit mode, where □□□ identifies the instruction

mnemonic.
□□□P - A 16 bit mode instruction modified to use pulse (single) operation.
D□□□ - An instruction modified to operate in 32 bit operation.
D□□□P - A 32 bit mode instruction modified to use pulse (single) operation.

★ - A repetitive instruction which will change the destination value on every scan unless
modified by the pulse function.
☆ - An operand which cannot be indexed, i.e. The addition of V or Z is either invalid or will
have no effect to the value of the operand.

TP03 Serial Programmable Controller Applied Instruction 4

4.7.1 IST (FNC 60)

Operation:
This instruction automatically sets up a multi-mode STL
operating system. This consists of variations of ‘manual’
and ‘automatic’ operation modes.
Points to note:
a) The IST instruction automatically

assigns and uses many bit flags and
word devices; these are listed in the
boxed column on the right of this page.

b) The IST instruction may only be used
ONCE.
It should be programmed close to the
beginning of the program, before the
controlled STL circuits.

c) The required operation mode is
selected by driving the devices
associated with operands S+0through
to S+4(5 inputs). None of the devices
within this range should be ON at the
same time. It is recommended that
these ‘inputs’ are selected through use
of a rotary switch.
If the currently selected operating
mode is changed before the ‘zero
return complete’ flag (M8043) is set, all
outputs will be turned OFF.

d) d) The ‘zero position’ is a term used to
identify a datum position from where
the controlled device, starts from and
returns too after it has completed its
task. Hence, the operating mode ‘zero
return’, causes the controlled system to return to this datum.

e) The available operating modes are split into two main groups, manual and automatic.
There are sub-modes to these groups. Their operation is defined as:

Manual
Manual (selected by device S+0)- Power supply to individual loads is turned ON and OFF

Operands
Mnemonic Function

S D1 D2
Program

steps
IST
FNC 60
(Initial
state)

Automatically sets up
a multi-mode STL
operating system

X, Y, M, S,
Note:
uses 8 consecutive
devices

S,
Note:
S20~S1023，D1 must
be lower than D2

IST:
7 steps

IST
S

S20 S40X20
D1 D2

M8000

Assigned devices
Indirect user selected devices:
S+0 Manual operation
S+1 Zero return
S+2 Step operation
S+3 One cycle operation
S+4 Cyclic operation
S+5 Zero return start
S+6 Automatic operation start
S+7 Stop
Initial states:
S0 initiates ‘manual’ operation
S1 initiates ‘zero return’ operation
S2 initiates ‘automatic’ operation
General states:
S10 to S19 ‘zero return’ sequence
D1 to D2 ‘automatic return’ sequence
Special bit flags:
M8040 = ON STL state transfer is
inhibited
M8041 = ON initial states are enabled
M8042 = Start pulse given by start input
M8043 = ON zero return completed
M8044 = ON machine zero detected
M8047 = ON STL monitor enabled

TP03 Serial Programmable Controller Applied Instruction 4

by using a separately provided means, often additional push buttons.
Zero Return (selected by device S+1) -Actuators are returned to their initial positions when
the Zero input (S+5) is given.
Automatic
One Step (selected by device S+2)- The controlled sequence operates automatically but
will only proceed to each new step when the start input (S+6) is given.
One Cycle (selected by device S+3) - The controlled actuators are operated for one
operation cycle. After the cycle has been completed, the actuators stop at their ‘zero’
positions. The cycle is started after a ‘start’ input (S+6) has been given.
A cycle which is currently being processed can be stopped at any time by activating the
‘stop’ input (S+7). To restart the sequence from the currently ‘paused’ position the start
input must be given once more.
Automatic (selected by device S+4)-Fully automatic operation is possible in this mode. The
programmed cycle is executed repeatedly when the ‘start’ input (S+6) is given. The
currently operating cycle will not stop immediately when the ‘stop’ input (S+7)is given.
The current operation will proceed to then end of the current cycle and then stop its
operation.
Note: Start, stop and zero inputs are often given by additional, manually operated push
buttons.
Please note that the ‘stop’ input is only a program stop signal. It cannot be used as a
replacement for an ‘Emergency stop’ push button. All safety, ‘Emergency stop’ devices
should be hardwired systems which will effectively isolate the machine from operation and
external power supplies. Please refer to local and national standards for applicable safety
practices.

TP03 Serial Programmable Controller Applied Instruction 4

4.7.2 SER (FNC 61)

Operation:
The SER instruction searches a defined data stack
from head address S1, with a stack length n. The
data searched for is specified in parameter S2 and
the results of the search are stored at destination device D for 5 consecutive devices.

Destination
device

Device description

D
Total number of occurrences of the searched value S2 (0 if no occurrences are
found)

D+1
The position (within the searched data stack) of the first occurrence of the searched
value S2

D+2
The position (within the searched data stack) of the last occurrence of the searched
value S2

D+3
The position (within the searched data stack) of the smallest value found in the data
stack (last occurrence is returned if there are multiple occurrences of the same
value)

D+4
The position (within the searched data stack) of the largest value found in the data
stack
(last occurrence is returned if there are multiple occurrences of the same value)

Points to note:
a) Normal rules of algebra are used to determine the largest and smallest values, i.e. -30

is smaller than 6 etc.
b) If no occurrence of the searched data can be found then destination devices D, D+1

and D+2will equal 0 (zero).
c) When using data register s as the destination device D please remember that 16 bit

operation will occupy 5 consecutive, data registers but 32 bit operation will occupy 10
data registers in pairs forming 5 double words.

d) When multiple bit devices are used to store the result (regardless of 16 or 32 bit
operation), only the specified size of group is written to for 5 consecutive occurrences,
i.e. K1Y0 would occupy 20 bit devices from Y0 (K1 = 4 bit devices and there will be 5
groups for the 5 results). As the maximum data stack is 256 (0 to 255) entries long, the
optimum group of bit devices required is K2, i.e. 8 bit devices.

Operands
Mnemonic Function

S1 S2 D n
Program

steps
SER
FNC 61
(Search a
Data Stack)

Generates a list
of statistics
about a single
data value
located/found in
a data stack

KnX,
KnY,
KnM,
KnS,
T, C, D

KnX,
KnY,
KnM,
KnS,
T, C,
D,V, Z
K, H

KnY, KnM,
KnS
T, C, D
Note: 5
consecutive
devices
are used

K,H, D
☆
Note:
n= 1~256 for 16
bit operation
n= 1~128 for
32 bit
operation

SER, SERP:
9 steps
DSER,
DSERP:
17 steps

SER D50 K20 D35 K100

S1 S2 D n

X72

TP03 Serial Programmable Controller Applied Instruction 4

4.7.3 ABSD (FNC 62)

Operation:
This instruction generates a variety of output
patterns (there are n number of addressed
outputs) in response to the current value of a
selected counter, S2.
Points to note:
a) The current value of the selected counter (S2) is compared against a user defined data

table. This data table has a head address identified by operand S1. S1should always
have an even device number.

b) For each destination bit (D) there are two consecutive values stored in the data table.
The first allocated value represents the event number when the destination device (D)
will be turned ON. The second identifies the reset event. The data table values are
allocated as a consecutive pair for each sequential element between D and D+n.

c) The data table has a length equal to 2 × n data entries. Depending on the format of the
data table, a single entry can be one data word such as D300 or a group of 16 bit
devices e.g.K4X000.

d) Values from 0 to 32,767 may be used in the data table.
e) The ABSD instruction may only be used ONCE.

From the example instruction and the data table below, the following timing diagram
for elements M0 to M3 can be constructed.

When counter S2 equals
the value below, the
destination device D is
turned ON turned OFF

Assigned
destination
device D

D300-40 D301 - 140 M0
D302 - 100 D303 - 200 M1
D304 - 160 D305 - 60 M2
D306 - 240 D307 - 280 M3

Operands
Mnemonic Function

S1 S2 D n
Program

steps
ABSD
FNC 62
(Absolute
drum
sequencer)

Generates
multiple output
patterns in
response to
counter data

K△X, K△Y,K△
M, K△S, (16
bit,△=4;32
bit,△=8),T, C,
D

C
16 bit,
C0~C199;
32 bit,

C200~C255

Y,M,S

K,H
☆
Note:
N≤64

ABSD:
9 steps
DABSD:
17 steps.

ABSD D300 C0 M0 K4

S1 S2 D n

X000

M0

M1

M2

M3

40 140 Count value

100 200

60 160

240 280
OFFON

0 180 360

TP03 Serial Programmable Controller Applied Instruction 4

4.7.4 INCD (FNC 63)

Operation:
This instruction generates a sequence of
sequential output patterns (there are n number
of addressed outputs) in response to the
current value of a pair of selected counters (S2, S2+1).
Points to note:
a) This instruction uses a ‘data table’ which contains a single list of values which are to be

selected and compared by two consecutive counters (S2and S2+1). The data table is
identified as having a head address S1and consists of n data elements.

b) Counter S2 is programmed in a conventional way. The set value for counter S2 MUST
be greater than any of the values entered into the data table. Counter S2 counts a user
event and compares this to the value of the currently selected data element from the
data table.
When the counter and data value are equal, S2 increments the count of counter
S2+1and resets its own current value to ‘0’ (zero). This new value of counter
S2+1selects the new data element from the data table and counter S2now compares
against the new data elements value.

c) The counter S2+1 may have values from 0 to n. Once the nth data element has been
processed, the operation complete flag M8029 is turned ON. This then automatically
resets counter S2+1hence, the cycle starts again with data element S1+0.

d) Values from 0 to 32,767 may be used in the data table.
e) The INCD instruction may only be used ONCE. From the example instruction and the

data table identified left, the following timing diagram for elements M0 to M3 can be
constructed.

Data table

Data element Data value / count value for counter S2
Value of
Counter S2+1

D300 20 0
D301 30 1
D302 10 2
D303 40 3

Operands
Mnemonic Function

S1 S2 D n
Program

steps
INCD
FNC 63
(Incremental
drum
sequencer)

Generates a
single
output
sequence in
response to
counter data

K△X, K△Y,
K△M, K△S,
(16 bit,△
=4).T, C, D

C
Uses 2
consecutive
Counters
C0~C198

Y, M, S

K,H
☆

Note:
N≤64

INCD:
9 steps

INCD D300 C0 M0 K4

S1 S2 D n

X000

TP03 Serial Programmable Controller Applied Instruction 4

M8029

M1

M2

M3

M4

C1

X000

C0

4.7.5 TTMR (FNC 64)

Operation:
The duration of time that the TTMR
instruction is energized, is measured and
stored in device D+1

(as a count of 100ms periods).
The data value of D+1 (in secs), multiplied
by the factor selected by the operand n, is
moved in to register D. The contents of D
could be used as the source data for an
indirect timer setting or even as raw data
for manipulation.
When the TTMR instruction is
de-energized D+1 is automatically reset (D is unchanged).

Operands
Mnemonic Function

D n
Program

steps
TTMR
FNC 64
(Teaching
timer)

Monitors the
duration of a
signal and places
the timed data
into a data register

D
Note:
2 devices 16 bit
words
are used D and D+1

K, H
☆
Note:
n= 0: (D) = (D+1) X1
n= 1: (D) = (D+1) X10
n= 2: (D) = (D+1) X100

TTMR:
5 steps

TTMR D300 K0
X010

X010

t0 t0

D
30

0

D300

D301

D301

D n

TP03 Serial Programmable Controller Applied Instruction 4

4.7.6 STMR (FNC 65)

Operation:
The designated timers will operate for the

duration n with the operational effect being

flagged by devices D+0to D+3.
Device D+0 is an off-delay timer,
D+1is a one shot timer. When D+3is
used in the configuration below,
D+1and D+2act in a alternate
flashing sequence.

X000

M 2

M 1

Operands
Mnemonic Function

S n D
Program

steps
STMR
FNC 65
(Special
timer)

Provides
dedicated
off-delay, one
shot and flash
timers

T
Note:
Timers 0 to
199 (100msec
devices)

K, H
☆
Note: n= 1 to
32,767

Y, M, S
Note:
uses 4
consecutive
devices D+0 to
D+3

STMR:
7 steps

X000

M 0 10S 10S

M 1 10S 10S

M 2 10S

M 3

STMR T10 K100 M0
X000 S n D

TP03 Serial Programmable Controller Applied Instruction 4

4.7.7 ALT (FNC 66)

Operation:
The status of the destination device (D) is alternated
on every operation of the ALT instruction.
This means the status of each bit device will flip
flop between ON and OFF. This will occur on
every program scan unless a pulse modifier or a
program interlock is used.
The ALT instruction is ideal for switching between two modes of operation e.g. start and
stop, on and off etc.

4.7.8 RAMP (FNC 67)

Operation:
The RAMP instruction varies a current value (D)
between the data limits set by the user (S1and
S2).
The ‘journey’ between these extreme limits takes
n program scans. The current scan number is
stored in device D+1. Once the current value of D
equals the set value of S2the execution complete
flag M8029 is set ON. The RAMP instruction can
vary both increasing and decreasing differences
between S1and S2.

Operands
Mnemonic Function

D
Program

steps
ALT
FNC 66 (Alternate state)
★

The status of the assigned device
is inverted on every operation of
the instruction

Y, M, S ALT, ALTP:
3 steps

Operands
Mnemonic Function

S1 S2 D n
Program steps

RAMP
FNC 67
(Ramp
variable
value)

Ramps a device
from one value
to another in the
specified
number of steps

D
Note:
Device D uses two consecutive
registers identified as D and
D+1 these are read only
devices.

K, H
☆
Note:
n= 1 to
32,767

RAMP:
9 steps

ALT M0
X000

X000

M 0

D 2 D 1

D 1 D 2

D1 < D2 时 D1 > D2 时

 (D3)

n n

 (D3)

RAMP D1 D2 D3 K1000
X000 S1 S2 D n

TP03 Serial Programmable Controller Applied Instruction 4

Points to note:
a) Users may set the operation mode of the RAMP

instruction by controlling the state of special auxiliary
relay M8026. When M8026 is OFF, the RAMP
instruction will be in repeat mode. This means when the
current value of D equals S2the RAMP instruction will
automatically reset and start again, i.e. the contents of
D will be reset to that of S1 and the device D+1 (the
number of current scans) will reset to ‘0’ (zero). This is shown in the diagram opposite.
When M8026 is set ON, FX users will be operating
the RAMP instruction in ‘Hold mode’.This means
once the current value of D equals that of S2, the
RAMP instruction will ‘freeze’ in this state. This
means the M8029 will be set ON for as long as the
instruction remains energized and the value of D will
not reset until the instruction is re-initialized, i.e. the
RAMP instruction is turned from OFF to ON again.

b) Users of FX0 and FX0N PLC’s cannot change the operating mode of the RAMP
instruction. For these PLC’s the mode is fixed as in the same case as FX PLC’s when
M8026 has been set ON, i.e. HOLD mode.

c) If the RAMP instruction is interrupted before completion, then the current position within
the ramp is ‘frozen’ until the drive signal is re-established. Once the RAMP instruction
is redriven registers D and D+1 reset and the cycle starts from its beginning again.

d) If the RAMP instruction is operated with a constant scan mode, i.e. D8039 is written to
with the desired scan time (slightly longer than the current scan time) and M8039 is set
ON. This would then allow the number of scans n (used to create the ramp between
S1and S2) to be associated to a time. If 1 scan is equal to the contents of D8039 then
the time to complete the ramp is equal to n × D8039. The RAMP instruction may also
be used with special M flags M8193 and M8194 to mimic the operation of the SER
(FNC 61) and RS (FNC 80) respectively when being programmed on older versions of
programming peripherals. See page 1-5 for more details.

4.7.9 ROTC (FNC 68)

X0

S2

S1
D

M8029

X0

S2

S1
D

M8029

TP03 Serial Programmable Controller Applied Instruction 4

Operation:
The ROTC instruction is used to aid the tracking
and positional movement of the rotary table as it
moves to a specified destination.

Points to note:
a) This instruction has many

automatically defined devices. These
are listed on the right of this page.

b) The ROTC instruction may only be
used ONCE.

c) The ROTC instruction uses a built in
2-phase counter to detect both
movement direction and distance
travelled. Devices D+0and D+1 are
used to input the phase pulses, while
device D+2is used to input the ‘zero
position’ on the rotary table. These
devices should be programmed as
shown in the example below (where
the physical termination takes place at
the associated X inputs).

The movement direction is found by
checking the relationship of the two
phases of the 2 phase counter, e.g

Operands
Mnemonic Function

S1 M1 M2 D n
Program

steps
ROTC
FNC 68
(Rotary
table
control)

Controls a rotary
tables movement
is response to a
requested destination
/ position

D

K, H
☆
M1≥M2

D K,H,D

ROTC:
9 steps

ROTC S m1 m2 D n
X10

Assigned devices
Indirect user selected devices:
D+0 A-phase counter signal - input
D+1 B-phase counter signal - input
D+2 Zero point detection - input
D+3 High speed forward - output
D+4 Low speed forward - output
D+5 Stop - output
D+6 Low speed reverse - output
D+7 High speed reverse - output

Rotary table constants:
m1 Number of encoder pulses per table

revolution
m2 Distance to be traveled at low speed

(in encoder pulses)
Operation variables:

S+0 Current position at the ‘zero point’
READ ONLY

S+1 Destination position (selected
station to be moved to) relative to the
‘zero point’ - User defined

S+2 Start position (selected station to be
moved) relative to the ‘zero point’
-User defined

X0

X1

X2

M0

M1

M2

TP03 Serial Programmable Controller Applied Instruction 4

d) When the ‘zero point’ input (D+2) is received the contents of device S+0is reset to ‘0’

(zero). Before starting any new operation it is advisable to ensure the rotary table is
initialized by moving the ‘zero point’ drive dog or marker around to the ‘zero point’
sensor. This could be considered as a calibration technique. The re-calibration of the
rotary table should be carried out periodically to ensure a consistent/accurate
operation.

e) Devices D+3 to D+7 are automatically set by the ROTC instruction during its operation.
These are used as flags to indicate the operation which should be carried out next.

f) f) All positions are entered in the form of the required encoder pulses. This can be seen
in the following example:

- Example:
A rotary table has an encoder which outputs 400 (m1) pulses per revolution. There are 8
stations (0 to 7) on the rotary table. This means that when the rotary table moves from one
station to its immediately following station, 50 encoder pulses are counted. The ‘zero
position’ is station ‘0’ (zero). To move the item located at station 7 to station 3 the following
values must be written to the ROTC instruction:
S+1=3 × 50 = 150 (station 3’s position in encoder pulses from the zero point)
S+2=7 　50 = 350 (station 7’s position in encoder pulses from the zero point)
m1= 400 (total number of encoder pulses per rev)
The rotary table is required approach the destination station at a slow speed starting from
1.5 stations before the destination. Therefore;
m2= 1.5 　50 = 75 slow speed distance either side of the destination station (in encoder
pulses)

TP03 Serial Programmable Controller Applied Instruction 4

4.7.10 SORT (FNC 69)

Operation:
This instruction constructs a data table of m1
records with m2 fields having a start or head
address of S. Then the data in field Nis
sorted in to numerical order while retaining each individual records integrity. The resulting
(new) data table is stored from destination device D.
Points to note:
a) When a sort occurs each record is sorted in to ascending order based on the data in

the selected sort field n.
b) The source (S) and destination (D) areas can be the same BUT if the areas are chosen

to be different, there should be no overlap between the areas occupied by the tables.
c) Once the SORT operation has been completed the ‘Operation Complete Flag’ M8029

is turned ON. For the complete sort of a data table the SORT instruction will be
processed m1 times.

d) During a SORT operation, the data in the SORT table must not be changed. If the data
is changed, this may result in an incorrectly sorted table.

e) The SORT instruction may only be used ONCE in a program.

From the example instruction and the ‘data table’ below left, the following data
manipulation will occur when nis set to the identified field

Original

FIELD(m2)
1 2 3

1 D100
32

D104
162

D108
4

2 D101
74

D105
6

D109
200

3 D102
100

D106
80

D110
62

 R
E
C

O
R
D

M1

4 D103
7

D107
34

D111
6

Operands
Mnemonic Function

S1 M1 M2 D n
Program

steps
SORT
FNC 69 (SORT
Tabulated
Data)

Data in a defined table can
be sorted on selected fields
while retaining record
integrity

D
☆

K, H,D
☆
Note:
m1= 1 to 32
m2= 1 to 6

D
☆

K, H
D
☆Note:
n = 1 to
m2

SORT:
11 steps

SORT D100 K4 K3 D100 K2
X21

S m1 m2 D n

TP03 Serial Programmable Controller Applied Instruction 4

Table Ist table sort when n=2 2 nd table sort when n=1
FIELD(m2) FIELD(m2)

1 2 3

1 2 3
1 D100

74
D104

6
D108
200

1 D100
7

D104
34

D108
6

2 D101
7

D105
34

D109
6

2 D101
32

D105
162

D109
4

3 D102
100

D106
80

D110
62

3 D102
74

D106
6

D110
200

R
E
C
O
R
D

M1
4 D103

32
D107
162

D111
4

R
E
C
O
R
D

M1
4 D103

100
D107

80
D111

62

Appiled Instructions 4

4.8 External I/O Devices - Functions 70 to 79
Contents:
TKY - Ten Key Input FNC 70
HKY - Hexadecimal Input FNC 71
DSW - Digital Switch(Thumbwheel input) FNC 72
SEGD - Seven Segment Decoder FNC 73
SEGL - Seven Segment With Latch FNC 74
ARWS - Arrow Switch FNC 75
ASC - ASCII Code FNC 76
PR- ‘Print’ To A Display FNC 77
Symbols list:
D - Destination device.
S - Source device.
m, n- Number of active devices, bits or an operational constant.

Additional numeric suffixes will be attached if there are more than one operand with the
same function e.g. D1, S3 or for lists/tabled devices D3+0, S+9 etc.

MSB - Most Significant Bit, sometimes used to indicate the mathematical sign of a number, i.e.
positive = 0, and negative = 1.

LSB - Least Significant Bit.
Instruction modifications:
□□□ - An instruction operating in 16 bit mode, where □□□ identifies the instruction

mnemonic.
□□□P - A 16 bit mode instruction modified to use pulse (single) operation.
D□□□ - An instruction modified to operate in 32 bit operation.
D□□□P - A 32 bit mode instruction modified to use pulse (single) operation.

★ - A repetitive instruction which will change the destination value on every scan unless

modified by the pulse function.
☆ - An operand which cannot be indexed, i.e. The addition of V or Z is either invalid or will

have no effect to the value of the operand.

Appiled Instructions 4

4.8.1 TKY (FNC 70)

Operation:
This instruction can read from 10 consecutive
devices(S+0 to S+9) and will store an entered
numeric string in device D1.
Points to note:
a) When a source device becomes active its associated destination (bit) device D2 also

becomes active. This destination device will remain active until another source device
is operated. Each source device maps directly to its own D2 device, i.e. S+0 maps to
D2+0, S+7 maps to D2+7 etc. These in turn, map directly to decimal values which are then
stored in the destination data devices specified by D1.

b) One source device may be active at any one time. The destination device D2+10 is used
to signify that a key (one of the 10 source devices) has been pressed. D2+10 will remain
active for as long as the key is held down. When the TKY instruction is active, every
press of a key adds that digit to the stored number in D1. When the TKY is OFF, all of
the D2 devices are reset, but the
data value in D1 remains intact.

c) When the TKY instruction is used
with 16 bit operation, D1 can store
numbers from 0 to 9,999 i.e. max. 4
digits. When the DTKY instruction is
used (32 bit operation) values of 0
to 99,999,999 (max. 8 digits) can be
accommodated in two consecutive
devices D1and D1+1.
In both cases if the number to be
stored exceeds the allowable
ranges, the highest digits will
overflow until an allowable number
is reached. The overflowed digits
are lost and can no longer be
accessed by the user. Leading

Operands
Mnemonic Function

S D1 D2
Program steps

TKY
FNC 70
(Ten key
input)

Reads 10
devices
with associated
decimal values
into a single
number

X, Y, M, S
Note: uses
10
consecutive
devices
(identified
as
S+0 to S+9)

KnY, KnM,
KnS,
T, C, D, V, Z
Note: uses
2
consecutive
devices for
32 bit
operation

Y, M, S
Note: uses
11
consecutive
devices
(identified
D2+0 to
D2+10)

TKY:
7 steps
DTKY:
13 steps

TKY X0 D0 M10

S D1 D2

④

②

①

③

① ② ③ ④M20

M13

M12

M11

M10

X000

X001

X002

X003

Appiled Instructions 4

zero’s are not accommodated, i.e. 0127 will actually be stored as 127 only.
d) The TKY instruction may only be used ONCE.
e) Using the above instruction as a brief example: If the ‘keys’ identified (a) to (d) are

pressed in that order the number 2,130 will be entered into D1. If the key identified as (e)
is then pressed the value in D1 will become 1,309. The initial ‘2’ has been lost.

8 9

PLC

4 5 6 7

X010 X011X004

0 1 2 3

X005 X006 X007COM X000 X001 X002 X003

4.8.2 HKY (FNC 71)

Operation 1 - Standard:
This instruction creates a multiplex of 4 outputs
(D1) and 4 inputs (S) to read in 16 different
devices. Decimal values of 0 to 9 can be stored
while 6 further function flags may be set.
Points to note:
a) Each of the first 10 multiplexed source devices (identified as 0 to 9) map directly to

decimal values 0 to 9. When entered, i.e. a source device is activated, then its
associated decimal value is added to the data string currently stored in D2. Activation of
any of these keys causes bit device D3+7 to turn ON for the duration of that key press.

Operands
Mnemonic Function

S D1 D2 D3
Program

steps
HKY
FNC 71
(Hexadecimal
key input)

Multiplexes
inputs
and outputs
to create a
numeric
keyboard
with 6
function
keys

X,
Note:
uses 4
consecu-
tive
devices

Y,
Note:
uses 4
consecu-ti
ve
devices

T, C, D, V,
Z

Y, M, S

HKY:
9 steps
DHKY:
17 steps

S D1 D2

X4
HKY X0 Y0 D0 M0

D3

Appiled Instructions 4

b) The last 6 multiplexed source devices (identified as function keys A to F) are used to
set bit devices D3+0 to D3+5

respectively. These bit flags, once
set ON, remain ON until the next
function key has been activated.
Activation of any of these keys
causes bit device D3+6 to turn ON for
the duration of that key press.

c) In all key entry cases, when two or
more keys are pressed, only the key
activated first is effective. When the
pressing of a key is sensed the
M8029 (execution complete flag) is
turned ON. When the HKY
instruction is OFF, all D3 devices are
reset but data value D2 remains
intact.

d) When the HKY instruction is used with 16 bit operation, D2 can store numbers from 0 to
9,999i.e. max. 4 digits. When the DHKY instruction is used (32 bit operation) values of
0 to 99,999,999 (max. 8 digits) can be accommodated in two consecutive devices D2

and D2+1. In both cases if the number to be stored exceeds the allowable ranges, the
highest digits will overflow until an allowable number is reached. The over-flowed digits
are lost and can no longer be accessed by the user. Leading zero’s are not
accommodated, i.e. 0127 will actually be stored as 127 only. This operation is similar to
that of the TKY instruction.

e) The HKY instruction may only be used
ONCE.

f) Normal operation requires 8 scans to read
the key inputs. To achieve a steady and
repeatable performance, constant scan
mode should be used, i.e. M8039 is set ON
and a user defined scan time is written to
register D8039. However, for a faster
response the HKY instruction should be
programmed in a timer interrupt routine as
shown in the example opposite.

X0COM

Y0COM Y1 Y2 Y3

X1 X2 X3

B8000

HKY X0 Y0 D0 M0

REF X0 K8

FEND

EI

REF X0 K8

END

IRET

Appiled Instructions 4

Operation 2 - Using the HKY Instruction With
M8167:
When the HKY instruction is used with flag
M8167 ON (as shown right), the operation of
keys A through F allow actual entry of the
Hexadecimal values of A through F respectively
into the data device D2. This is in addition to the
standard 0 through 9 keys. All other operation is
as specified in ‘Operation 1 - Standard’.
Maximum storage values for this operation
become FFFF in 16 bit mode and FFFFFFFF in
32 bit (double word) mode.

HKY X10 Y60 D5 M90

M8167
X17

SET M8167
X000

HKY X10 Y60 D5 M90

M8167RST

These two program examples
perform the same task

Appiled Instructions 4

4.8.3 DSW (FNC 72)

Operation:
This instruction multiplexes 4 outputs (D1)
through 1 or 2(n) sets of switches. Each
set of switches consists of 4 thumbwheels
providing a single digit input.
Points to note:
a) When n = 1 only one set of switches are read. The multiplex is completed by wiring the

thumbwheels in parallel back to 4 consecutive inputs from the head address specified
in operand S. The (4 digit) data read is stored in data device D2.

4 8 1 2 4 8

BCD
digital
switch

S/S

COM X20 X21

X20 X21

1 2

X26 X27

X22 X23

X22 X23 X25X24

010 110 210 310

010 110 210 310

Operands
Mnemonic Function

S D1 D2 n
Program

steps
DSW
FNC 72
(Digital
switch)

.

Multiplexed
reading of n
sets
of digital
(BCD)
thumbwheels

X
Note:
If n=2
then
8
devices
else 4.

Y
Note:
uses 4
consecutiv
e
devices

T, C, D, V, Z
Note: If
n=2 then 2
devices
else 1

K, H
☆
Note:
n= 1 or 2

DSW:
9 steps

DSW X20 Y20 D0 K1
X0

S D1 D2 n

Appiled Instructions 4

b) When n= 2, two sets of switches are read. This configuration requires 8 consecutive
inputs taken from the head address specified in operand S. The data from the first set
of switches, i.e. those using the first 4 inputs, is read into data device D2. The data from
the second set of switches (again 4 digits) is read into data device D2+1.

c) The outputs used for
multiplexing (D1) are cycled for
as long as the DSW instruction
is driven. After the completion of
one reading, the execution
complete flag M8029 is set. The
number of outputs used does
not depend on the number of
switches n.

d) If the DSW instruction is suspended during
mid-operation, when it is restarted it will start
from the beginning of its cycle and not from its
last status achieved.

e) It is recommended that transistor output units
are used with this instruction. However, if the
program technique at the right is used, relay output units can be successfully operated
as the outputs will not be continually active.

SET M0
X000

DSW X10 Y10 D0 K1

M0RST
M000

M8029

X10

Y20 0.1s 0.1s 0.1s

Y21 0.1s

Y22 0.1s

Y23 0.1s

M1029 Cycle complete

Appiled Instructions 4

4.8.4 SEGD (FNC 73)

Operation:
A single hexadecimal digit (0 to 9, A to F)
occupying the lower 4 bits of source device
S is decoded into a data format used to
drive a seven segment display. A
representation of the hex digit is
then displayed. The decoded data
is stored in the lower 8 bits of
destination device D. The upper 8
bits of the same device are not
written to. The diagram opposite shows the bit control of the seven segment display. The
active bits correspond to those set to 1 in the lower 8 bits of the destination device D.

4.8.5 SEGL (FNC 74)

Operation:
This instruction takes a source decimal value (S)
and writes it to a set of 4 multiplexed, outputs (D).
Because the logic used with latched seven
segment displays varies between display manufactures, this instruction can be modified to
suit most logic requirements. Configurations are selected depending on the value of n, see
the following page.
Points to note:
a) Data is written to a set of multiplexed outputs (D+0 to D+7, 8 outputs) and hence seven

Operands
Mnemonic Function

S D
Program

steps
SEGD
FNC 73
(Seven
segment
decoder)

Hex data is
decoded into
a format used
to drive
seven
segment
displays

K, H
KnX, KnY, KnM, KnS,
T, C, D, V, Z
Note: Uses only the
lower 4 bits

KnY, KnM, KnS,
T, C, D, V, Z
Note: The upper 8 bits
remain unchanged

SEGD,
SEGDP:
5 steps

Operands
Mnemonic Function

S D n
Program

steps
SEGL
FNC 74
(Seven
segment
with latch)

Writes data
to
multiplexed
single digit
displays – 4
digits per set,
max. 2 sets

K, H
KnX, KnY,
KnM, KnS
T, C, D, V, Z

Y
Note:
n = 0 to 3, 8
outputs are
Used
n = 4 to 7, 12
outputs are
used

K, H,☆
Note:
n= 0 to 3, 1 set
of 7 Seg active
n= 4 to 7, 2
sets
of 7 Seg active

SEGL:
7 steps

SEGD D0 K2Y0
X0

S D

SEGL D0 Y0 K4

S D n

B5 B1

B4 B2

B3

B6

B0 It can be seen that B7 is NOT used.
Hence B7 of the destination device D
will always be OFF

Appiled Instructions 4

segment displays. A set of displays consists of 4 single digit seven segment units. A
maximum of two sets of displays can be driven with this instruction. When two sets are
used the displays share the same strobe outputs (D+4 to D+7 are the strobe outputs). An
additional set of 4 output devices is required to supply the new data for the second set
of displays (D+10 to D+13, this is an octal addition). The strobe outputs cause the written
data to be latched at the seven segment display.

b) Source data within the range of 0 to 9,999 (decimal) is written to the multiplexed
outputs. When one set of displays are used this data is taken from the device specified
as operand S. When two sets of displays are active the source device S+1 supplies the
data for the second set of displays. This data must again be within the range 0 to 9,999.
When using two sets of displays the data is treated as two separate numbers and is
not combined to provide a single output of 0 to 99,999,999.

c) The SEGL instruction takes 12 program scans to complete one output cycle regardless
of the number of display sets used. On completion, the execution complete flag M8029
is set.

Y013COM3 Y010 Y011 Y012COM1 Y005 Y006 Y007Y002 Y003 COM2 Y004Y000 Y001

V+V+

SET1 SET2

310 210 110 010 310 210 110 010

d) If the SEGL instruction is suspended during mid-operation, when it is restarted it will

start from the beginning of its cycle and not from its last status achieved.
e) The PLC can operate a maximum of TWO SEGL instructions.
Selecting the correct value for operand n
The selection of parameter n depends on 4 factors;
1) The logic type used for the PLC output
2) The logic type used for the seven segment data lines
3) The logic type used for the seven segment strobe signal
4) How many sets of displays are to be used

Appiled Instructions 4

Device considered Positive logic Negative logic

PLC Logic

With a source output, when the
output is HIGH the internal logic
is ‘1’

With a sink output, when the
output is LOW the internal logic is
‘1

Strobe
signal
logic

Data is latched and held when
this signal is HIGH, i.e. its logic is
‘1’

Data is latched and held when
this signal is LOW, i.e. its logic is
‘1’

Seven
segment
Display
logic Data

signal
logic

Active data lines are held HIGH,
i.e. they have a logic value of ‘1’

Active data lines are held LOW,
i.e. they have a logic value of ‘1’

There are two types of logic system available, positive logic and negative logic. Depending
on the type of system, i.e. which elements have positive or negative logic the value of n can
be selected from the table below with the final reference to the number of sets of seven
segment displays being used:

Seven segment display logic n
PLC Logic

Data Logic Strobe logic 1 display set 2 display sets
Positive (Source) Positive (High) Positive (High)
Negative (Sink) Negative (Low) Negative (Low)

0 4

Positive (Source) Positive (High) Negative (Low)
Negative (Sink) Negative (Low) Positive (High)

1 5

Positive (Source) Positive (High) Negative (Low)
Negative (Sink) Negative (Low) Positive (High)

2 6

Positive (Source) Positive (High) Positive (High)
Negative (Sink) Negative (Low) Negative (Low)

3 7

Appiled Instructions 4

4.8.6 ARWS (FNC 75)

Operation:
This instruction displays the contents of a single
data device D1on a set of 4 digits, seven
segment displays. The data within D1is actually
in a standard decimal format but is automatically
converted to BCD for display on the seven segment units. Each digit of the displayed
number can be selected and edited. The editing procedure directly changes the value of
the device specified as D1.
Points to note:
a) The data stored in destination device D1 can

have a value from the range 0 to 9,999
(decimal), i.e. 4 digit data. Each digits data
value, can be incremented (S+1) or
decremented (S+0) by pressing the
associated control keys. The edited numbers
automatically ‘wrap-around’ from 9 - 0 - 1 and
1 -0 - 9. The digit data is displayed by the
lower 4 devices from D2, i.e. D2+0 to D2+3.

b) On initial activation of the ARWS instruction, the digit in the numeric position 10 3 is
currently selected. Each digit position can
be sequentially ‘cursored through’ by
moving to the left (S+2) or to the right (S+3).
When the last digit is reached, the ARWS
instruction automatically wraps the cursor
position around, i.e. after position 10 3,
position 10 0 is selected and vice-versa.
Each digit is physically selected by a
different ‘strobe’ output.

c) To aid the user of an operation panel
controlled with the ARWS instruction, additional lamps could be wired in parallel with
the strobe outputs for each digit. This would indicate which digit was currently selected
for editing.

d) The parameter n has the same function as parameter n of the SEGL instruction –

Operands
Mnemonic Function

S D1 D2 n
Program

steps
ARWS
FNC 75
(Arrow
switch)

Creates a
user
defined, (4
key) numeric
data entry
panel

X, Y, M, S
Note:
uses 4
consecutiv
e
devices

T, C, D,
V, Z
Note:
data is
stored in
a
decimal
format

Y
Note:
uses 8
consecutiv
e
devices

K, H
☆
Note:
n= 0 to 3,

ARWS:
9 steps

ARWS X10 D0 Y0 K0

S D1 D2 n

X11

X12

X10

X13

Increase digit value(s+1)

Decrease digit value(s+0)

Course
left(s+3)

Cursor
right(s+2)

Y0 1
Y1 2
Y2 4
Y3 8

Y4

Y7

Y5

Y6
LED

310 210 110 010

Appiled Instructions 4

please see page5-86, ‘Selecting the correct value for operand n‘. Note: as the ARWS
instruction only controls one set of displays only values of 0 to 3 are valid for n.

e) The ARWS instruction can be used ONCE. This instruction should only be used on
transistor output PLC’s.

4.8.7 ASC (FNC 76)

Operation:
The source data string S consists of up to 8
characters taken from the printable ASCII
character (Char) set. If less than 8 Char are
used, the difference is made up with null Char (ASCII 00).
The source data is converted to its associated ASCII codes. The codes are then stored in
the destination devices D, see example shown below.

Byte
D

High Low
D300 42 (B) 41 (A)
D301 44 (D) 43 (C)
D302 46(F) 45 (E)
D303 48 (H) 47 (G)

Note:

 ASCII Char cannot be entered from a hand held programmer.
 When=ON, only low 8 bytes of device D can be available for storing data and high 8

bytes will be written with 0.

Operands
Mnemonic Function

S D
Program

steps
ASC
FNC 76
(ASCII
code
conversion)

An entered
alphanumeric
string can be
converted to
its ASCII
codes

Alphanumeric data
e.g.0-9, A - Z and a - z
etc.
Note: Only one, 8
character string may
be entered at any one
time.

T, C, D
Note:
uses 4 consecutive
devices

ASC:
7 steps

ASC ABCDEFGH D300
X000 S D

Appiled Instructions 4

4.8.8 PR (FNC 77)

Operation:
Source data (stored as ASCII values) is read byte
by byte from the source data devices. Each byte is
mapped directly to the first 8 consecutive
destination devices D+0 to D+7). The final two
destination bits provide a strobe signal (D+10, numbered in octal) and an execution/busy
flag (D+11, in octal).
Points to note:
a) The source byte-data maps the lowest bit to the first destination device D+0.

Consequently the highest bit of the byte is sent to destination device D+7.

b) The PR instruction may be used ONCE .
c) The operation of the PR instruction is program scan dependent. Under standard

circumstances it takes 3 program scans to send 1 byte. However, for a faster operation
the PR instruction could be written into a timer interrupt routine similar to the one
demonstrated for
HKY on page 5-82.

d) 8 byte operation
has the following
timing diagram. It
should be noted
that when the drive
input (in the
example X0) is
switched OFF the
PR instruction will
cease operation. When it is restarted the PR instruction will start from the beginning of
the message string. Once all 8 bytes have been sent the execution/busy flag is
dropped and the PR instruction suspends operation.

e) 16 byte operation requires the special auxiliary flag M8027 to be driven ON (it is

recommended that M8000 is used as a drive input). In this operation mode the drive
input (in the example X0) does not have to be active all of the time. Once the PR
instruction is activated it will operate continuously until all 16 bytes of data have been

Operands
Mnemonic Function

S D
Program

steps
PR
FNC 77
(Print)

Outputs
ASCII
data to items
such as
display
units

T, C, D
Note: 8 byte mode
(M8027=OFF)
uses 4 consecutive
devices 16 byte mode
(M8027= ON) uses 8
consecutive devices

Y
Note: uses 10
consecutive
devices.

PR:
5 steps

PR D300 Y000
X000 S D

X000

Y000~Y007
T0 T0

T0

Y010

Y011

BA HC D

Appiled Instructions 4

sent or the value 00H (null)
has been sent. Once the
operation is complete the
execution/busy flag (D+11,
octal) is turned OFF and
M8029 the execution
complete flag is set.

T T T

X000

Y007~Y000

Y010

Appiled Instructions 4

4.9 External Devices - Functions 80 to 88
Contents:
RS - RS Communications FNC 80
PRUN - Parallel Run FNC 81
ASCI - Hexadecimal to ASCII FNC 82
HEX - ASCII to Hexadecimal FNC 83
CCD - Check Code FNC 84
VRRD Volume Read FNC 85
VRSC Volume Scale FNC 86
MBUS - MBUS Serial Data Transmission FNC 87
PID - PID Control Loop FNC 88

Symbols list:
D - Destination device.
S - Source device.
m, n- Number of active devices, bits or an operational constant.

Additional numeric suffixes will be attached if there are more than one operand with the
same function e.g. D1, S3 or for lists/tabled devices D3+0, S+9 etc.

MSB - Most Significant Bit, sometimes used to indicate the mathematical sign of a number, i.e.
positive = 0, and negative = 1.

LSB - Least Significant Bit.
Instruction modifications:
□□□ - An instruction operating in 16 bit mode, where □□□ identifies the instruction

mnemonic.
□□□P - A 16 bit mode instruction modified to use pulse (single) operation.
D□□□ - An instruction modified to operate in 32 bit operation.
D□□□P - A 32 bit mode instruction modified to use pulse (single) operation.

★ - A repetitive instruction which will change the destination value on every scan unless

modified by the pulse function.
☆ - An operand which cannot be indexed, i.e. The addition of V or Z is either invalid or will

have no effect to the value of the operand.

Appiled Instructions 4

4.9.1 RS (FNC 80)

Operation:
Such instruction is used to serially send or
receive data without protocol, together with
the optional RS-232, RS-485 expansion
cards or built-in RS485 port.
Points to note:
a) This instruction has many automatically defined devices. These are listed in the boxed

column to the right of this page.
b) The RS instruction has two parts, send (or transmission) and receive. The first

elements of the RS instruction specify the transmission data buffer (S) as a head
address, which contains m number of elements in a sequential stack.
The specification of the receive data area is contained in the last two parameters of the
RS instruction. The destination (D) for received messages has a buffer or stack length
of n data elements. The size of the send and receive buffers dictates how large a
single message can be. Buffer sizes may be updated at the following times:
1) Transmit buffer - before transmission occurs, i.e. before M8122 is set ON
2) Receive buffer - after a message has been received and before M8123 is reset.

c) Data cannot be sent while a message is being received, the transmission will be
delayed - see M8121.

d) More than one RS instruction can be programmed but only one may be active at any
one time.

.

Data devices:
a) for RS485 port

1) Sending ready (M8121): the Relay will be set to 1 when it is sending-data request in
receiving data. The relay will be automatically cleared to 0 in sending the data.

2) Sending request (M8122): When M8122 is set to 1 by the pulse for sending ready
or for sending finish, the data sting, which is from (S), whose length is m will be sent.
M8122 will automatically reset to 0 which sending is finished.

3) Sending end (M8123): M8123 will be ON when sending is finished. Please reset
M8123 only after the received data is saved in certain registers.

4) Overtime judging (M8129): Retry receiving will not begin within the specified times
and Overtime flag will be ON. When send finished, M8123will be reset to 0 and
M8129 will be automatically reset.

Operands
Mnemonic Function

S m D n K
Program

steps
RS
FNC 80
(Serial
Communic
ations
instruction)

Used to control
serial
communication
s from/to the
programmable
controller

D
(includin
g file
registers)

K, H,
D
☆
m = 0 to
255

D K, H,
D
☆
m = 0 to
255

0,1

RS: 11
steps

RS D10 K5 D20 K5 0

S m D n K

Appiled Instructions 4

5) Communication frame (D8120): refer to the said frame to MBUS instruction.
6) Remaining data number for sending data (D8122)
7) Number of received data (D8123)
8) Overtime watchdog time (D8129) : watchdog time for communication overtime

(5~255):*10ms。
b) For expansion card RS485/ RS232

1) Sending ready (M8321)
2) Sending request (M8322)
3) Sending end (M8323)
4) Error flag (M8124)
5) Overtime judging (M8329)
6) Communication frame (D8320)
7) Remaining data number for sending (D8322)

Appiled Instructions 4

4.9.2 PRUN (FNC 81)

Operation:
This instruction allows source data to be moved
into the bit transmission area. The actual control
of the parallel link communication is by special
M flags.
Points to note:
a) Parallel link communications automatically

take place when both systems are ‘linked’
and the Master station (M8070), Slave
station flags (M8071) have been set ON
(there is no need to have a PRUN instruction
for communications).
There can only be one of each type of
station as this system connects only two
PLCS. The programs shown opposite
should be inserted into the appropriate PLC programs.
Once the station flags have been set, they can only be cleared by either forcibly
resetting them when the PLC is in STOP mode or turning the power OFF and ON
again.

b) During automatic communications the following data is ‘swapped’ between the Master
and Slave PLC’s.

Master station Slave Station
Bit Data

Communication
direction Bit Data

M800 to M899 (100 points) → M800 to M899 (100 points)
M900 to M999 (100 points) ← M900 to M999 (100 points)
Data words Data words
D490 to D499 (10 points) → D490 to D499 (10 points)

M8070 =
ON

D500 to D509 (10 points) ← D500 to D509 (10 points)

M8071 =
ON

c) The PRUN instruction enables data to be moved into the bit transmission area or out of

the (bit) data received area. The PRUN instruction differs from the move statement in
that it operates in octal. This means if K4X20 was moved using the PRUN instruction to
K4M920, data would not be written to M928 and M929 as these devices fall outside of
the octal counting system. This can be seen in the diagram below.

Operands
Mnemonic Function

S D
Program

steps
KnX, KnM KnY, KnM PRUN

FNC 81
(Parallel
run)

Octal
transmission Note:

n = 1 to 8
For ease and convenience, the head address
Bit should be a multiple of ‘10’, e.g. X10, M100,
Y30 etc.

PRUN,
PRUNP:
5 steps
DPRUN,
DPRUNP:
9 steps

PRUN K4X10 K4M0
X000 S D

M8000
M8070

M8000
M8071

Mster

Slave

Appiled Instructions 4

 X31 X30 X27 X26 X25 X24 X23 X22 X21 X20 X32 X33 X34 X35 X36 X37

M920M937 M930 M929 M928 M927 M926 M925 M924 M923 M922 M921M931M932M933M934M935M936

K4X20

K4M920

These decives are not written
to with the PRUN instruction

4.9.3 ASCI (FNC 82)

Operation:
This instruction reads n hexadecimal data
characters from head source address (S) and
converts them in to the equivalent ASCII
code.
This is then stored at the destination (D) for n number of bytes.
Points to note:
Please note that data is converted ‘as read’, i.e. using the example above with the following
data in (D9,D8) ABCDH,EF26H. Taking the first n hexadecimal characters (digits) from the
right (in this case n= 6) and converting them to ASCI will store values in 6 consecutive
bytes from D20, i.e. D20 = (67, 68), D21 = (69, 70) and D22 = (50, 54) respectively. In true
characters symbols that would be read as CDEF26.
This can be shown graphically as in the table to the right. Please take special note that the
source data (S) read from the most significant device to the least significant. While the
destination data (D) is read in the opposite direction.
The ASCI instruction can be used with the M8161, 8 bit/16bit mode flag. The effect of this
flag is exactly the same as. The example shows the effect when M8161 is OFF. If M8161
was set ON, then only the lower destination byte (b0-7) would be used to store data and
hence 6 data registers would be required (D20 through D25).

Operands
Mnemonic Function

S D n
Program

steps
ASCI
FNC 82
(Converts
HEX to
ASCII)

Converts a
data value
from
hexadecimal to
ASCII

K, H, KnX,
KnY,
KnM, KnS
T, C, D, V, Z

KnY, KnM,
KnS, T, C, D

K, H
Note:
n = 1 to 256
☆

ASCI,
ASCIP:
7 steps

S D n

ASCI D8 D20 K6
X000

Appiled Instructions 4

Source (S) Data

b12-15 A ASCII Code
b8-11 B

Destination
(D) HEX DEC

Symbol

b4-7 C b8-15 43 67 'C'
D9

b0-3 D
D20

b0-7 44 68 'D'
b12-15 E b8-15 45 69 'E'
b8-11 F

D21
b0-7 46 70 'F'

b4-7 2 b8-15 32 50 '2'
D8

b0-3 6
D22

b0-7 36 54 '6'

ASCII Character Codes

The table below identifies the usable hexadecimal digits and their associated ASCII codes
HEX
Character

0 1 2 3 4 5 6 7 8 9 A B C D E F

HEX 30 31 32 33 34 35 36 37 38 39 41 42 43 44 45 46ASCII
Code DEC 48 49 50 51 52 53 54 55 56 57 65 66 67 68 69 70
Character
Symbol

’0’ ’1’ ’2’ ’3’ ’4’ ’5’ ’6’ ’7’ ’8’ ’9’ ’A’ ’B’ ’C’ ’D’ ’E’ ’F’

Appiled Instructions 4

4.9.4 HEX (FNC 83)

Operation:
This instruction reads n ASCII data bytes from
head source address (S) and converts them
in to the equivalent Hexadecimal character.
This is then stored at the destination (D) for n
number of bytes.
Points to note:
Please note that this instruction ‘works in reverse’ to the ASCI instruction, i.e. ASCII data
stored in bytes is converted into associated hexadecimal characters. The HEX instruction
can be used with the M8161 8bit/16bit flag. In this case the source data (S)is read from
either the lower byte (8bits) when M8161 is ON, or the whole word when M8161 is OFF i.e.
using the example above with the following data in devices D50 and D51 respectively
(43H,41H) (42H,31H) and assuming M8161 is ON.
The ASCI I data is converted to its hexadecimal equivalent and stored sequentially digit by
digit from the destination head address.
If M8161 had been OFF, then the contents of D20 would read CAB1H.

ASCII Code
Source (S)

HEX DEC
Symbol

 Destination
(D)

Data

b8-15 43 67 'C' b12-15 -
D51

b0-7 41 65 'A' b8-11 -
b8-15 42 66 'B' b4-7 A

D50
b0-7 31 49 '1'

D20

b0-3
1

For further details regarding the use of the HEX instruction and about the available ASCII
data ranges, please see the following information point ‘ASCII Character Codes’ under the
ASCI instruction on the previous page.
Important:
If an attempt is made to access an ASCII Code (HEX or Decimal) which falls outside of the
ranges specified in the table on previous page, the instruction is not executed. Error 8067
is flagged in data register D8004 and error 6706 is identified in D8067. Care should be

Operands
Mnemonic Function

S D n
Program

steps
HEX
FNC 83
(Converts
ASCII to
HEX)

Converts a
data value
from ASCII
in to a
hexadecimal
equivalent

K, H, KnX,
KnY, KnM,
KnS, T, C,
D

KnY, KnM,
KnS
T, C, D, V, Z

K, H
Note:
n = 1 to 256
☆

HEX,
HEXP:
7 steps

HEX D50 D20 K4
M10 S D n

Appiled Instructions 4

taken when using the M8161 flag, and additional in the specification of the number of
element ‘n‘ which are to be processed as these are the most likely places where this error
will be caused.

4.9.5 CCD (FNC 84)

Operation:
This instruction looks at a byte (8 bit) stack of
data from head address (S)for n bytes and
checks the vertical bit pattern for parity and sums
the total data stack. These two pieces of data are
then stored at the destination (D).
Points to note:
a) The SUM of the data stack is stored at destination D while the Parity for the data stack

is stored at D+1.
b) During the Parity check an even result is indicated by the use of a 0 (zero) while an odd

parity is indicated by a 1 (one).
c) This instruction can be used with the 8 bit/ 16 bit mode flag M8161. The following

results will occur under these circumstances.

M8161=OFF
Sourse (S) Bit patterm

H FF 1 1 1 1 1 1 1 1
D100

L FF 1 1 1 1 1 1 1 1
H FF 1 1 1 1 1 1 1 1

D101
L 00 0 0 0 0 0 0 0 0
H F0 1 1 1 1 0 0 0 0

D102
L 0F 0 0 0 0 1 1 1 1

Vertical
Party D1

 0 0 0 0 0 0 0 0

SUM D0 3FC

It should be noted that when M8161 is OFF ‘n’ represents the number of consecutive bytes
checked by the CCD instruction. When M8161 is ON only the lower bytes of ‘n’ consecutive
words are used.
The ‘SUM’ is quite simply a summation of the total quantity of data in the data stack. The
Parity is checked vertically through the data stack as shown by the shaded areas.

Operands
Mnemonic Function

S D n
Program

steps
CCD
FNC 84
(Check
Code)

Checks the
‘vertical’ parity
of a data stack

KnX, KnY,
KnM,
KnS
T, C, D

KnY, KnM,
KnS
T, C, D

K, H
D
Note:
n = 1 to 256
☆

CCD,
CCDP:
7 steps

M8161=ON
Sourse (S) Bit patterm

D100 L FF 1 1 1 1 1 1 1 1
D101 L 00 0 0 0 0 0 0 0 0
D102 L 0F 0 0 0 0 1 1 1 1
D103 L F0 1 1 1 1 0 0 0 0
D104 L F0 1 1 1 1 0 0 0 0
D105 L 0F 0 0 0 0 1 1 1 1

Vertical
Party D1

 1 1 1 1 1 1 1 1

SUM D0 2FD

CCD D100 D0 K6
X000 S D n

Appiled Instructions 4

4.9.6 VRRD (FNC 85)

Operation:
The analog data is in 10 bit format, i.e. values from 0
to 255 are readable. The read data is stored at the
destination device identified under operand D.

4.9.7 VRSD (FNC 86)

Operation:
The identified volume (S) on the FX-8AV is read as
a rotary switch with 11 set positions (0 to 10). The
position data is stored at device D as an integer
from the range 0 to 10.

Operands
Mnemonic Function

S D
Program

steps
VRRD
FNC 85
(Volume
read)

Read volume from
2 VRs numbered
No0,No1,and 6
VRs on expansion
card , numbered
No2~No7.

K, H
Note:
S= 0 to 7

KnY, KnM, KnS
T, C, D, V, Z

VRRD,
VRRDP:
5 steps

Operands
Mnemonic Function

S D
Program

steps
VRSC
FNC 86
(Volume
scale)

Read scale (0~10)
from 2 VRs numbered
No0,No1,and 6 VRs
on expansion card ,
numbered No2~No7.

K, H
Note:
S= 0 to 7

KnY, KnM, KnS
T, C, D, V, Z

VRSC,
VRSCP:
5 steps

VRRD K0 D0
X000 S D

VRSC K0 D0
X000 S D

Appiled Instructions 4

4.9.8 MBUS (FNC 87)

Operation:
MBUS instruction can enable master communication.
The communication string sent is HEX
codes, including command code, function
code and communication data. The MBUS
instruction will send the command transferred into ASCII code to BUFF. The command is
communication string consisting of certain mode such as RTU mode, together with CRC check
code (2bytes) and end character (0DH+0AH).
Receiving string includes address, function code, communication data. The start character,
end character and check code will not be saved.

 The communication frame of RS485 port can be set by special register D8120. The
PLC will not accept the data modified in D8120 during MBUS operation.

 The communication frame of optional expansion card RS485/ RS232 can be set by
special register D8320. PLC will not accept the data modified in D8320during MBUS
operation.

 The length of receiving data ‘m’ should be set to K0 as there is not data to be sent.
 The program can apply lots of instructions as RS, MBUS, DTLK and RMIO, however,

it must be ensured that one communication port only can be driven by one instruction
at one time. Off Time for Switching should not be less that a scan time.

Communication specification:
<communication format「D8120」，「D8320」>
D8120, D8320 is mainly used with the instruction F87 (MBUS). Also, they can also be used
as special register for other instructions.
However, when F87 (MBUS) is used in the program, the setting of D8120, D8320 relevant
to other communication instruction or others will be disabled. Please set the D8120, D8320
according to following directions.

Operands
Mnemonic Function

S m D n K
Program

steps
MBUS
FNC 87

Enable Modbus
function for
optional
communication
card RS485 /
RS232 (all
types are
available)

D K,H,D

m=0~255

D K,H,D

n=0~255

K,D

0,1

MBUS：11
steps

MBUS S m D n K

Appiled Instructions 4

Content Bit description
0 (OFF) 1 (ON)

B0 Data length 7 bit 8 bit
B1
B2

Parity B2,B1
 (0,0): none
 (0,1): ODD
 (1,0): EVEN

B3 Stop bit 1 bit 2 bit
B4
B5
B6
B7

Baud rate
 (bps)

B7,B6,B5,B4
 (0,1,1,1):9,600
 (1,0,0,0):19,200
 (1,0,0,1):38,400
 (1,0,1,0):57,600
 (1,0,1,1):76,800

B7,B6,B5,B4
 (1,1,0,0):128,000
 (1,1,0,1):153,600
 (1,1,1,0):307,200

B8 ～
B12
*1

Reserved

B13 Modbus mode (0) : RTU mode (1) : ASCII mode
B14～
B15*1

Reserved

*1:B8～B12，B14，B15 is particularly for other communication mode. When in F87 (MBUS)
instruction, all these should be set to 0.

 Example for communication frame

Please set D8320 according to following steps or peripheral communication frame.

 b15 b12 b11 b8 b7 b4 b3 b0
D8320 0 0 1 0 0 0 0 0 1 0 0 1 1 0 0 1
↓
D8320 2099H

The special relay and register related to the instruction:
c) for RS485 port

9) Sending ready (M8121): the Relay will be set to 1 when it is sending-data request in

Appiled Instructions 4

receiving data. The relay will be automatically cleared to 0 in sending the data.
10) Sending request (M8122): When M8122 is set to 1 by the pulse for sending ready

or for sending finish, the data sting, which is from (S), whose length is m will be sent.
M8122 will automatically reset to 0 which sending is finished.

11) Sending end (M8123): M8123 will be ON when sending is finished. Please reset
M8123 only after the received data is saved in certain registers.

12) Error flag (M8124): receiving error (RTU mode: CRC error; ASCII mode: LRC or
end character error).

13) Overtime judging (M8129): Retry receiving will not begin within the specified times
and Overtime flag will be ON. When send finished, M8123will be reset to 0 and
M8129 will be automatically reset.

14) Communication frame (D8120): refer to the said frame to MBUS instruction.
15) Remaining data number for sending data (D8122)
16) Number of received data (D8123)
17) Overtime watchdog time (D8129) : watchdog time for communication overtime

(5~255):*10ms。

d) For expansion card RS485/ RS232
8) Sending ready (M8321)
9) Sending request (M8322)
10) Sending end (M8323)
11) Error flag (M8124)
12) Overtime judging (M8329)
13) Communication frame (D8320)
14) Remaining data number for sending (D8322)
15) Number of receiving data (D8323)
16) Overtime watchdog time (D8329)

Sequence for sending and receiving
MBUS instruction specifies data start address and number of the data from PLC, together with
first destination for the received data and max number for receivable data. Sequence for MBUS
sending and receiving data is as following: (RS485 expansion card is applied.)

Appiled Instructions 4

Sending request M8322

 When X010 ON, MBUS instruction will be enabled, and The PLC will be ready to
receive data.

 M8322 will be set ON by a pulse as in waiting for receiving data or in receiving data.
PLC will send the data starting at D200 and data length D0 out. M8322 will be reset to
0 as sending ends.

Receiving end M8323

 When Receiving end flag M8323 is ON, The PLC will store all the received data to
corresponding registers, then reset M8323 to OFF.

 As long as M8323 is reset to OFF, The PLC will be ready to receive data. If X010 is
ON, MBUS instruction will be enabled. Such progress is operating repeatedly.

 When (D1) = 0, MBUS instruction is enabled, M8323 will not operate. Thusly, The PLC
will not enter the next round of receiving data. If D1 1, the opera≧ tion ‘ON M8323,
then OFF M8323’ will enable The PLC the next round of receiving data.

Appiled Instructions 4

Overtime judging M8329

 If there is interruption in receiving data and the following time lasting as D8329 set, the
overtime M8329 will be ON and receiving data will end.

M8329 will be automatically reset as M8323 reset the program.
Receiving the data (ASCII code) without end character also is available with this function.

Interruption in receiving data

Data

D8329*10ms

Reset by basic sequential instruction

ON

ON

Receiving
data

Overtime judging M8329

Receiving end M8323

Overtime watchdog time

 Set the watchdog time for overtime.
The time = set value X10ms, efficient value for set is 5～255. D8329 will become 50ms as
the set value exceeds the range.
For example: judging time for overtime is set to 50ms.

<16-bit data dealing> when M8161=OFF, (M8161 is special relay shared by RS, ASCI,
HEX, CCD)

Appiled Instructions 4

Sending data differs from ASCII mode and RTU mode
STX D200

low
D200
high

D201low D201high Check code ETX

Start character
(3A)

 LRC (ASCII) End
character
(0D0A)

RTU mode
(no)

↑ CRC (RTU) RTU mode
(no)

S．specifies start address
M specifies bytes number to be sent

Receiving data

STX D500
low

D500
high

D501
low

D501
high

D502
low

D502
high

Check code ETX

Start
character
(3A)

 LRC
(ASCII)

End character
(0D0A)

RTU (no) ↑ CRC (RTU)
 D．specifies start address
 Less than n, up limit point for the data to be

received. End character EXT, or n will indicate
receiving end.

(1) Sending data and remaining data to be send
RTU mode

ASCII mode

Appiled Instructions 4

Sending data

ASCII mode

Remained data
number for
sending D8322

3 2
1 0

14
15

1617

(2) Sending data and number of sending data
(3) RTU mode

ASCII mode

<8 bit data dealing (expansion function)> M8161=ON (M8161 is special relay shared by
RS,ASCI,HEX,CCD)

Appiled Instructions 4

Sending data differ from ASCII mode and RTU mode
STX D200

low
D201 low D202 low D203

low
Check code ETX

Start character (3A) LRC (ASCII) End character
(0D0A)

RTU mode (no) ↑ CRC (RTU) RTU mode (no)
S．specifies start address
M specifies sending byte number

Receiving data
STX D500

low
D501
low

D502
low

D503
low

D504
low

D505
low

Check code ETX

Start
character
(3A)

 LRC (ASCII) End character
(0D0A)

RTU (no) ↑ CRC (RTU)
 D．specifies start address
 Less than n, up limit point for the data to be

received. End character EXT, or n will indicate
receiving end.

（1） Receiving data and the number of the data remained

RTU mode:

ASCII mode:

Appiled Instructions 4

Sending data

ASCII mode

Remained
data for
sending
D8322

3 2
1 0

14
15

1617

（2） Receiving data and the number of these data
RTU mode:

ASCII mode:

Appiled Instructions 4

4.9.9 PID (FNC 88)

Operation:
This instruction takes a current value (S2) and
compares it to a predefined set value (S1).
The difference or error between the two
values is then processed through a PID loop to produce a correction factor which also
takes into account previous iterations and trends of the calculated error. The PID process
calculates a correction factor which is applied to the current output value and stored as a
corrected output value in destination device (D). The setup parameters for the PID control
loop are stored in 25 consecutive data registers S3+0 through S3+24.
Points to note:
a) Every PID application is different. There will be a certain amount of “trial and error”

necessary to set the variables at optimal levels.
b) A Pre-tuning feature is available that can quickly provide initial values for the PID

process.
c) As 25 data register are required for the setup parameters for the PID loop, the head

address of this data stack cannot be greater than D975. The contents of this data stack
are explained later in this section. Multiple PID instructions can be programmed,
however each PID loop must not have conflicting data registers.

d) There are control limits in the PLC intended to help the PID controlled machines
operate in a safe manner. If it becomes necessary to reset the Set Point Value (S1)
during operation, it is recommended to turn the PID command Off and restore the
command after entering the new Set Point Value. This will prevent the safety control
limits from stopping the operation of the PID instruction prematurely.

e) The PID instruction has a special set of error codes associated with it. Errors are
identified in the normal manner. The error codes associated with the PID loop will be
flagged by M8067 with the appropriate error code being stored in D8067. These error
devices are not exclusive to the PID instruction so care should be taken to investigate
errors properly. Please see chapter 6, ‘Diagnostic Devices’ for more information.

f) A full PID iteration does not have to be performed. By manipulation of the setup
parameters P (proportional), I (Integral) or D (derivative) loops may be accessed
individually or in a user defined/selected group. This is detailed later in this section.

Operands
Mnemonic Function

S1 S2 S3 D
Program

steps
PID
FNC 88
(PID
control
loop)
register
each

Receives a
data input and
calculates a
corrective
action to a
specified
level based on
PID control

D☆

D☆
S3:S3~S3+6

D☆

PID:
9 steps

PID D18 D19 D20 D46

S1 S2 S3 D

X10

Appiled Instructions 4

PID Equations
Forward }

1
){(1 nnnn DEV

T
TsEVEVKpMV ++−=∆ −

SVPVEV nfn −=

121 .
.

.)2(
. −−− +

+++−
+

= n
DD

DD
nfnfnf

DD

D D
TTs

TPVPVPV
TTs

TDn
α

α
α

∑∆= MVMVn

Reverse

}
1

){(1 nnnn DEV
T
TsEVEVKpMV ++−=∆ −

nfn PVSVEV −=

121 .
.

.)2(
. −−− +

+−−
+

= n
DD

DD
nfnfnf

DD

D D
TTs

TPVPVPV
TTs

TDn
α

α
α

∑ ∆∆= MVMVn

PVnf = PVn + α(PVnf-1 - PVn)
EVn = the current Error Value Dn = the Derivative Value
EVn-1 = the previous Error Value Dn-1 = the previous Derivative Value
SV = the Set Point Value (S1) KP = the Proportion Constant
PVn = the current Process Value (S2) 　 α= the Input Filter
PVnf = the calculated Process Value TS = the Sampling Time
PVnf-1 = the previous Process Value TI = the Integral Time Constant
PVnf-2 = the second previous Process Value TD = the Time Derivative Constant
△MV = the change in the Output
KD =the Derivative Filter Constant Manipulation Values
MVn = the current Output Manipulation Value (D)
Please see the Parameter setup section for a more detailed description of the variable
parameters and in which memory register they must be set.
Forward and Reverse operation (S3+1, b0)
The Forward operation is the condition where the Process Value, PVnf, is greater than the
Set Point, SV. An example is a building that requires air conditioning. Without air
conditioning, the temperature of the room will be higher than the Set Point so work is
required to lower PVnf.
The Reverse operation is the condition where the Set Point is higher than the Process
Value. An example of this is an oven. The temperature of the oven will be too low unless
some work is done to raise it, i.e. - the heating element is turned on.
The assumption is made with PID control that some work will need to be performed to bring
the system into balance. Therefore, ∆MV will always have a value. Ideally, a system that is

Appiled Instructions 4

stable will require a constant amount of work to keep the Set Point and Process Value
equal.
PID setup parameters; S3
The PID setup parameters are contained in a 25 register data stack. Some of these
devices require data input from the user, some are reserved for the internal operation and
some return output data from the PID operation.
Parameters S3+0 through S3+6 must be set by the user.

Parameter
S3 + P

Parameter
name/function

Description Setting
range

S3 Sampling time
(Ts)

The time interval set between the reading the current
Process Value of the system (PVnf)

1~32767[m
s]

BIT0 0:Forward operation
1:Reverse operation

BIT1 Process Value(PVnf)alarm enable,
OFF(0)/ON(1)

BIT2 Output Value (MV) alarm enable,
OFF(0)/ON(1)

S3+1 Action - reaction
direction and
alarm control

BIT3-15 Reserved

Not
applicable

S3+2 Input filter (α) Alters the effect of the input filter 0~99[%]
S3+3 Proportional

gain (Kp)
This is a factor used to align the proportional output in
a known magnitude to the change in the Process
Value (PVnf). This is the P part of the PID loop.

1~32767[%]

S3+4 Integral time
constant (TI)

This is the I part of the PID loop.
This is the time taken for the corrective integral value
to reach a magnitude equal to that applied by the
proportional or P part of the loop. Selecting 0 (zero) for
this parameter disables the I effect

1~32767[x1
00ms]

S3+5 Derivative gain
(KD)

This is a factor used to align the derivative output in a
known proportion to the change in the Process Value
(PVnf)

0~100[%]

S3+6 Derivative time
constant
(TD)

This is the D part of the PID loop.
This is the time taken for the corrective derivative
value to reach a magnitude equal to that applied by the
proportional or P part of the loop. Selecting 0 (zero) for
this parameter disables the D effect.

1~32767[x1
00ms]

S3+7~S3+19 Reserved for use for the internal processing
S3+20 Process Value,

maximum
positive change

Active when S3+1,b1 is set ON
This is a user defined maximum limit for the
Process Value (PVnf). If the Process Value
(PVnf) exceeds the limit, S3+24, bit b0 is set On

S3+21 Process Value,
minimum value

Active when S3+1,b1 is set ON
This is a user defined lower limit for the Process Value.
If the Process Value (PVnf) falls below the limit,

0~32767

Appiled Instructions 4

S3+24, bit b1 is set On
S3+22 Output Value,

maximum
positive change

Active when S3+1, b2 is set ON
This is a user defined maximum limit for the quantity of
positive change which can occur in one PID scan. If
the Output Value (MV) exceeds this, S3+24, bit b2 is
set On.

S3+23 Output Value,
Maximum
negative change

Active when S3+1, b2 is set ON
This is a user defined maximum limit for the quantity of
negative change which can occur in one PID scan. If
the Output Value (MV) falls below the lower limit,
S3+24, bit b3 is set On.
BIT0 High limit exceeded in Process Value (PVnf)
BIT1 Below low limit for the Process Value (PVnf)
BIT2 Excessive positive change in Output Value

(MV)
BIT3 Excessive negative change in Output Value

(MV)

S3+24 Alarm flags
(Read Only)

BIT4-15 Reserved

Not
applicable

Configuring the PID loop
The PID loop can be configured to offer variations on PID control. These are as follows:

Selection via setup registers Control
method S3 +3 (KP) S3+ 4 (TI) S3 + 6 (TD)

Description

P User value Set to 0 (zero) Set to 0 (zero) Proportional effect only
PI User value User value Set to 0(zero) Proportional and integral effect
PD User value Set to 0 (zero) User value Proportional and derivative effect
PID User value User value User value Full PID

It should be noted that in all situations there must be a proportional or ‘P’ element to the
loop.
P - Proportional change
When a proportional factor is applied, it calculates the difference between the Current Error
Value, EVn, and the Previous Error Value, EVn-1. The Proportional Change is based upon
how fast the Process Value is moving closer to (or further away from) the Set Point Value
NOT upon the actual difference between the PVnf and SV.
Note: Other PID systems might operate using an equation that calculates the Proportional
change based upon the size of the Current Error Value only.
I - integral change
Once a proportional change has been applied to an error situation, ‘fine tuning’ the
correction can be performed with the I or integral element. Initially only a small change is
applied but as time increases and the error is not corrected the integral effect is increased.
It is important to note how TI actually effects how fast the total integral correction is applied.
The smaller TI is, the bigger effect the integral will have.
Note: The TI value is set in data register S3+4. Setting zero for this variable disables the

Appiled Instructions 4

Integral effect.
The Derivative Change
The derivative function supplements the effects caused by the proportional response. The
derivative effect is the result of a calculation involving elements TD, TS, and the calculated
error. This causes the derivative to initially output a large corrective action which dissipates
rapidly over time. The speed of this dissipation can be controlled by the value TD: If the
value of TD is small then the effect of applying derivative control is increased.
Because the initial effect of the derivative can be quite severe there is a ‘softening’ effect
which can be applied through the use of KD, the derivative gain. The action of KD could be
considered as a filter allowing the derivative response to be scaled between 0 and 100%.
The phenomenon of chasing, or overcorrecting both too high and too low, is most often
associated with the Derivative portion of the equation because of the large initial correction
factor.
Note: The TD value is set in Data register S3+6. Setting zero for this variable disables the
Derivative effect.

Effective use of the input filter α S3+2

To prevent the PID instruction from reacting immediately and wildly to any errors on the
Current Value, there is a filtering mechanism which allows the PID instruction to observe
and account for any significant fluctuations over three samples.
The quantitative effect of the input filter is to calculate a filtered Input Value to the PID
instruction taken from a defined percentage of the Current Value and the previous two
filtered Input Values.
This type of filtering is often called first-order lag filter. It is particularly useful for removing
the effects of high frequency noise which may appear on input signals received from
sensors.
The greater the filter percentage is set the longer the lag time. When the input filter is set to
zero, this effectively removes all filtering and allows the Current Value to be used directly
as the Input Value.
Initial values for PID loops
The PID instruction has many parameters which can be set and configured to the user’s
needs. The difficulty is to find a good point from which to start the fine tuning of the PID
loop to the system requirements. The following suggestions will not be ideal for all
situations and applications but will at least give users of the PID instruction a reasonable
points from which to start.
A value should be given to all the variables listed below before turning the PID instruction
ON. Values should be chosen so that the Output Manipulated Value does not exceed ±
32767.
Recommended initial settings:
TS = Should be equal to the total program scan time or a multiple of that scan time, i.e. 2

times, 5 times, etc.

α = 50%

KP = This should be adjusted to a value dependent upon the maximum corrective action to

Appiled Instructions 4

reach the set point - values should be experimented with from an arbitrary 75%
TI = This should ideally be 4 to 10 times greater than the TD time
KD = 50%
TD = This is set dependent upon the total system response, i.e. not only how fast the

programmable controller reacts but also any valves, pumps or motors.

For a fast system reaction TD will be set to a quick or small time, this should however
never be less than TS. A slower reacting system will require the TD duration to be
longer. A beginning value can be TD twice the value of TS.

Care should be taken when adjusting PID variables to ensure the safety of the operator
and avoid damage to the equipment.

With ALL PID values there is a degree of experimentation required to tune the PID
loop to the exact local conditions. A sensible approach to this is to adjust one
parameter at a time by fixed percentages, i.e. say increasing (or decreasing) the KP

value in steps of 10%. Selecting PID parameters without due consideration will
result in a badly configured system which does not perform as required and will
cause the user to become frustrated. Please remember the PID process is a purely
mathematical calculation and as such has no regard for the ‘quality’ of the variable
data supplied by the user/system - the PID will always process its PID mathematical
function with the data available.

Example PID Settings
The partial program shown at below demonstrates which parameters must be set for the
functioning of the FX2N. The first step sets the user values for S3+0 to S3+6. The PID
instruction will be activated when M4 is On.
From the PID instruction at the bottom of the ladder, S1 = D200; S2 = D201; S3 = D500; and
D or M=D525

Appiled Instructions 4

FNC12
MOV P K500 D500

FNC12
MOV P H0000 D501

FNC12
MOV P K50 D502

FNC12
MOV P K75 D503

FNC12
MOV P K2000 D504

FNC12
MOV P K50 D505

FNC12
MOV P K3000 D506

FNC12
MOV P K1000 D200

FNC79
TO K2 K1 K4 K4

FNC78
FROM K2 K5 D201 K4

FNC88
PID D200 D201 D500 D525

M8002

M8002

M1

M4

D500: Ts=500 ms

D501: Forward Operation,
Alarms Not Enable

D502: Input Filter=50%

D503: Kp=75%

D504: T1=4000ms

D505: Kd=50%

D506: Td=1000ms

D200: Set Point=1000

D201: PVnf (an analog input
value)

Begin the PID instruction D525:
PID Output Value

TP03 Serial Programmable Controller Applied Instruction 4

4.10 Floating Point 1 & 2 - Functions 110 to 129
Contents:
Floating Point 1
ECMP - Float Compare FNC 110
EZCP - Float Zone Compare FNC 111
□□□ - Not Available FNC 112 to 117
EBCD - Float to Scientific FNC 118
EBIN - Scientific to Float FNC 119
Floating Point 2
EADD - Float Add FNC 120
ESUB - Float Subtract FNC 121
EMUL - Float Multiplication FNC 122
EDIV - Float Division FNC 123
□□□ - Not Available FNC 124 to 126
ESQR - Float Square Root FNC 127
PPP - Not Available FNC 128
INT - Float to Integer FNC 129

Symbols list:
D - Destination device.
S - Source device.
m, n- Number of active devices, bits or an operational constant.

Additional numeric suffixes will be attached if there are more than one operand with the
same function e.g. D1, S3 or for lists/tabled devices D3+0, S+9 etc.

MSB - Most Significant Bit, sometimes used to indicate the mathematical sign of a number, i.e.
positive = 0, and negative = 1.

LSB - Least Significant Bit.
Instruction modifications:
□□□ - An instruction operating in 16 bit mode, where □□□ identifies the instruction

mnemonic.
□□□P - A 16 bit mode instruction modified to use pulse (single) operation.
D□□□ - An instruction modified to operate in 32 bit operation.
D□□□P - A 32 bit mode instruction modified to use pulse (single) operation.

★ - A repetitive instruction which will change the destination value on every scan unless

modified by the pulse function.
☆ - An operand which cannot be indexed, i.e. The addition of V or Z is either invalid or will

have no effect to the value of the operand.

TP03 Serial Programmable Controller Applied Instruction 4

4.10.1 ECMP (FNC 110)

Operation:
The data of S1 is compared to the data of S2.
The result is indicated by 3 bit devices
specified with the head address entered as D.
The bit devices indicate:
S2 is less than < S1 - bit device D is ON
S2 is equal to = S1 - bit device D+1 is ON
S2 is greater than > S1 - bit device D+2 is ON

Points to note:
The status of the destination devices will be kept even if the ECMP instruction is
deactivated.
Full algebraic comparisons are used: i.e. -1.79 × 10 27 is smaller than 9.43 × 10 -15

4.10.2 EZCP (FNC 111)

Operation:
The operation is the same as the
ECMP instruction except that a single
data value (S3) is compared to
a data range (S1 - S2).
S3 is less than S1 and S2 - bit device D
is ON
S3 is between S1 and S2 - bit device D+1

is ON
S3 is greater than S2 - bit device D+2 is ON

Operands
Mnemonic Function

S1 S2 D
Program

steps
ECMP
FNC 110
(Floating Point
Compare)

Compares two
floating point
values - results
of <, = and > are
given

K, H - integer value
automatically
converted to floating point
D - must be in floating
point format (32bits)

Y, M, S
Note:
3 consecutive
devices are
used.

DECMP,
DECMPP:
13 steps

Operands
Mnemonic Function

S1 S2 S3 D
Program

steps
EZCP
FNC 111
(Floating
Point Zone
Compare)

Compares a float
range with a float
value - results of
<, = and > are
given

K, H - integer value
automatically
converted to floating point
D - must be in floating point
format (32 bits).
Note: S1 must be less than S2

Y, M, S
Note: 3
consecutive
devices
are used

DEZCP,
DEZCPP:
13 steps

DECMP D30 D40 M0
X000

M0

M1

M2

D31,D30>D41,D40

D31,D30<D41,D40

D31,D30=D41,D40

DEZCP D30 D40 D50 M0
X000

M0

M1

M2

D31,D30>D51,D50

D31,D30≤D51,D50≤D41,D40

D51,D50>D41,D40

TP03 Serial Programmable Controller Applied Instruction 4

4.10.3 EBCD (FNC 118)

Operation:
Converts a floating point value at S into separate
mantissa and exponent parts at D and D+1

(scientific format).
Points to note:
a) The instruction must be double word format. The destinations D and D+1 represent the

mantissa and exponent of the floating point number respectively.
b) To provide maximum accuracy in the conversion the mantissa D will be in the range

000 to 9999 (or 0) and the exponent D+1 corrected to an appropriate value.
c) E.g. S= 3.4567 × 10 -5 will become D= 3456, D+1 = -8

4.10.4 EBIN (FNC 119)

Operation:
Generates a floating point
number at D from scientific
format data at source S.
Points to note:
a) The instruction must be double word format. The source data Sand S+1 represent the

mantissa and exponent of the floating point number to be generated.
b) To provide maximum accuracy in the conversion the mantissa S must be in the range

1000 to 9999 (or 0) and the exponent S+1 corrected to an appropriate value.
c) E.g. S= 5432, S+1 = 12 will become D= 5.432 x 10 9

Operands
Mnemonic Function

S D
Program

steps
EBCD
FNC 118 (Float to
Scientific
conversion)

Converts floating
point number
format to scientific
number format

D - must be in
floating point
format (32 bits).

D - 2 consecutive
devices are used
D - mantissa
D+1 - exponent.

DEBCD,
DEBCDP:
9 steps

Operands
Mnemonic Function

S D
Program

steps
EBIN
FNC 119 (Scientific
to Float
conversion)

Converts scientific
number format to
floating point
number format

D - 2 consecutive
devices are used
S- mantissa
S+1 - exponent

D - a floating point
Value (32 bits).

DEBIN,
DEBINP:
9 steps

DEBCD D50 D40
X000

DEBIN D50 D40
X000

TP03 Serial Programmable Controller Applied Instruction 4

4.10.5 EADD (FNC 120)

Operation:
The floating point values stored in the
source devices S1 and S2 are algebraically
added and the result stored in the
destination device D.
Points to note:
a) The instruction must use the double word format; i.e., DEADD or DEADDP. All source

data and destination data will be double word; i.e. uses two consecutive data registers
to store the data (32 bits).
Except for K or H, all source data will be regarded as being in floating point format and
the result stored in the destination will also be in floating point format.

b) If a constant K or H is used as source data, the value is converted to floating point
before the addition operation.

c) The addition is mathematically correct: i.e., 2.3456 × 10 2 + (-5.6 × 10 -1) = 2.34 × 10 2

d) The same device may be used as a source and as the destination. If this is the case
then, on continuous operation of the DEADD instruction, the result of the previous
operation will be used as a new source value and a new result calculated.
This will happen every program scan unless the pulse modifier or an interlock program
is used.

e) If the result of the calculation is zero “0” then the zero flag, M8020 is set ON.
If the result of the calculation is larger than the largest floating point number then the
carry flag, M8021 is set ON and the result is set to the largest value.
If the result of the calculation is smaller than the smallest floating point number then the
borrow flag, M8022 is set ON and the result is set to the smallest value.

Operands
Mnemonic Function

S1 S2 D
Program

steps
EADD
FNC 120
(Floating
Point Addition)

Adds two
floating point
numbers
together

K, H - integer value
automatically converted to
floating point
D - must be in floating point
format (32 bits).

D - a floating
point value
(32 bits).

DEADD,
DEADDP:
13 steps

DEADD D50 D40 D10
X000

TP03 Serial Programmable Controller Applied Instruction 4

4.10.6 EAUB (FNC 121)

Operation:
The floating point value of S2 is
subtracted from the floating point value
of S1and the result stored in destination
device D.
Points to note:
All points of the EADD instruction apply, except that a subtraction is performed.

4.10.7 EMUL (FNC 122)

Operation:
The floating point value of S1is
multiplied with the floating point value of
S2. The result of the multiplication is
stored at D as a floating point value.
Points to note:
Point a, b, c and d of the EADD instruction apply, except that a multiplication is performed.

Operands
Mnemonic Function

S1 S2 D
Program

steps
ESUB
FNC 121
(Floating
Point)

Sub-traction)
Subtracts one
floating point
number from
another

K, H - integer value
automatically converted to
floating point
D - must be in floating point
number format (32 bits).

D - a floating
point value(32
bits).

DESUB,
DESUBP:
13 steps

Operands
Mnemonic Function

S1 S2 D
Program

steps
EMUL
FNC 122
(Floating
Point
Multiplication)

Multiplies two
floating point
numbers
together

K, H - integer value
automatically converted to
floating point
D - must be in floating point
format (32 bits).

D - a floating
point value
(32 bits).

DEMUL,
DEMULP:
13 steps

DESUB P D50 D40 D10
X000

DEMUL P D50 D40 D10
X000

TP03 Serial Programmable Controller Applied Instruction 4

4.10.8 EDIV (FNC 123)

Operation:
The floating point value of S1 is divided
by the floating point value of S2. The
result of the division is stored in D as a
floating point value. No remainder is calculated.
Points to note:
Points a, b, c, d of the EADD instruction apply, except that a division is performed.

 If S2 is 0 (zero) then a divide by zero error occurs and the operation fails.

4.10.9 ESQR (FNC 127)

Operation:
A square root is performed on the
floating point value of Sand the
result is stored in D.
Points to note:
Points a, b, c, d of the EADD instruction apply, except that a square root is performed.

 If S is negative then an error occurs and error flag M8067 is set ON.

Operands
Mnemonic Function

S1 S2 D
Program

steps
EDIV
FNC 123
(Floating Point
Division)

Divides one
floating point
number by
another.

K, H - integer value
automatically converted to
floating point
D - must be in floating point
format (32 bits).

D - a floating
point value (32
bits).

DEDIV,
DEDIVP:
13 steps

Operands
Mnemonic Function

S D
Program

steps
ESQR
FNC 127
(Floating Point
Square Root)

Calculates the
square root of
a floating point
value.

K, H - integer value
automatically converted to
floating point
D - must be in floating point
number format (32 bits).

D - a floating
point value (32
bits).

DESQR,
DESQRP:
9 steps

DEDIV P D50 D40 D10
X000

DESQR D50 D40
X000

TP03 Serial Programmable Controller Applied Instruction 4

4.10.10 INT (FNC 129)

Operation:
The floating point value of S is rounded down
to the nearest integer value and stored in
normal binary format in D.
Points to note:
a) The source data is always a double (32 bit) word; a floating point value.

For single word (16 bit) operation the destination is a 16 bit value.
For double word (32 bit) operation the destination is a 32 bit value.

b) This instruction is the inverse of the FLT instruction. (See page 5-49)
c) If the result is 0 then the zero flag M8020 is set ON.

If the source data is not a whole number it must be rounded down. In this case the
borrow flag M8021 is set ON to indicate a rounded value.
If the resulting integer value is outside the valid range for the destination device then
an overflow occurs. In this case the carry flag M8022 is set on to indicate overflow.

Note: If overflow occurs, the value in the destination device will not be valid.

Operands
Mnemonic Function

S D
Program

steps
INT
FNC 129
(Float to
Integer)

Converts a number
from floating point
format to decimal
format

K, H - integer value
automatically converted to
floating point
D - must be in floating point
number format (32 bits).

D - decimal
format for INT,
INTP - 16 bits
for DINT,
DINTP – 32
bits

INT, INTP:
5 steps
DINT, DINTP:
9 steps

DINT D510 D254
M25

TP03 Serial Programmable Controller Applied Instruction 4

4.11 Trigonometry - FNC 130 to FNC 139
Contents:
Floating point 3
SIN - Sine FNC 130
COS - Cosine FNC 131
TAN - Tangent FNC 132
ASIN - ARC Sine FNC 133
ACOS - ARC Cosine FNC 134
ATAN - ARC Tangent FNC 135
RAD - Degree to Radian FNC 136
DEG - Radian to Degree FNC 137
□□□- Not Available FNC 138 to 139
Symbols list:
D - Destination device.
S - Source device.
m, n- Number of active devices, bits or an operational constant.

Additional numeric suffixes will be attached if there are more than one operand with the
same function e.g. D1, S3 or for lists/tabled devices D3+0, S+9 etc.

MSB - Most Significant Bit, sometimes used to indicate the mathematical sign of a number, i.e.
positive = 0, and negative = 1.

LSB - Least Significant Bit.
Instruction modifications:
□□□ - An instruction operating in 16 bit mode, where □□□ identifies the instruction

mnemonic.
□□□P - A 16 bit mode instruction modified to use pulse (single) operation.
D□□□ - An instruction modified to operate in 32 bit operation.
D□□□P - A 32 bit mode instruction modified to use pulse (single) operation.

★- A repetitive instruction which will change the destination value on every scan unless

modified by the pulse function.
☆ - An operand which cannot be indexed, i.e. The addition of V or Z is either invalid or will

have no effect to the value of the operand.

TP03 Serial Programmable Controller Applied Instruction 4

4.11.1 SIN (FNC 130)

Contents:
This instruction performs the mathematical SIN
operation on the floating point value in S. The
result is stored in D.
Points to note:
a) The instruction must use the double word format: i.e., DSIN or DSINP. All source and

destination data will be double word; i.e., uses two consecutive data registers to store
the data (32 bits).
The source data is regarded as being in floating point format and the destination is also
in floating point format.

Radian Angles
Below is an program example of how to calculate angles in radians using floating point.

K45 degrees to D0

K90 degrees to D0

Convert D0 to float in D4,D5

Calculate π in radians (π/180)
Store as a float in D20,D21
Calculate angle in radians in
D30,D31
(deg° × π/180 = rads)
Calculate SIN of angle in D100

Operands
Mnemonic Function

S D
Program

steps
SIN
FNC 130 (Sine)

Calculates the
sine of a floating
point value

D - must be in floating
point number format (32
bits).(radians)

D - a floating
point value (32
bits).

DSIN,
DSINP:
9 steps

DSIN D10 D20
X000

MOVP K45 D0

MOVP K90 D0

FLT D0 D4

X001

X002

M8000
K31415926 K1800000000 D0DEDIV

D4 D0 D30DEMUL

DSIN D30 D100

TP03 Serial Programmable Controller Applied Instruction 4

4.11.2 COS (FNC 131)

Contents:
This instruction performs the mathematical COS
operation on the floating point value in S. The result is
stored in D.
Points to note:
All the points for the SIN instruction apply, except that COS is calculated.

4.11.3 TAN (FNC 132)

Contents:
This instruction performs the mathematical
TAN operation on the floating point value in S.
The result is stored in D.

Points to note:
All the points for the SIN instruction apply, except that COS is calculated.

Operands
Mnemonic Function

S D
Program

steps
COS
FNC 131
(Cosine)

Calculates the
cosine of a floating
point value

D - must be in floating
point number format
(32 bits).

D - a floating
point
Value (32 bits).

DCOS,
DCOSP:
9 steps

Operands
Mnemonic Function

S D
Program

steps
TAN
FNC132
(Tangent)

Calculates the tangent
of a floating point value

D - must be in floating
point number format (32
bits).

D - a floating
point Value
(32 bits).

DTAN,
DTANP:
9 steps

DCOS D10 D20
X000

DTAN D10 D20
X000

TP03 Serial Programmable Controller Applied Instruction 4

4.11.4 ASIN (FNC 133)

Contents:
This instruction is ARC SIN （inverse function
of SIN） the data in S, then send the result
(floating point value) to D.

Example:

（D11，D10） RAD (floating point value)

（D21，D20） ASIN (floating point value)

4.11.5 ACOS (FNC 134)

Contents:
This instruction is ARC COS （inverse
function of COS） the data in S, then send the
result (floating point value) to D.

Example:

（D11，D10） RAD (floating point value)

（D21，D20） ACOS result (floating point value)

Operands
Mnemonic Function

S D
Program steps

ASIN
FNC133

ARC SIN (floating
point value)

D
-1≤S<1

D

DASIN,
DASINP:
9 steps

Operands
Mnemonic Function

S D
Program steps

ACOS
FNC134

ARC COS
(floating
point value)

D
-1≤S<1

D

DACOS,
DACOSP:
9 steps

D ASIN S D
X000

D ACOS S D
X000

TP03 Serial Programmable Controller Applied Instruction 4

4.11.6 ATAN (FNC 135)

Contents:
This instruction is ARC TAN （inverse function of TAN）
the data in S, then send the result (floating point value)
to D.

Example:

（D11，D10） RAD (floating point value)

（D21，D20） ATAN result (floating point value)

4.11.7 RAD (FNC 136)

Contents:
This instruction converters angle unit from DEG to
RAD

Operands
Mnemonic Function

S D
Program steps

ATAN
FNC135

ARC TAN
(floating point
value)

D
-π/2～π/2

D

DATAN,
DATANP:
9 steps

Operands
Mnemonic Function

S D
Program steps

RAD
FNC136

Converter angle
unit from DEG to
RAD

D - a
floating
point Value

D - a floating
point Value

DRAD
DRADP:
9 steps

D ATAN S D
X000

DRAD S D
X000

TP03 Serial Programmable Controller Applied Instruction 4

4.11.8 DEG (FNC 137)

Contents:
This instruction converters angle unit from RAD to
DEG

Operands
Mnemonic Function

S D
Program steps

DEG
FNC137

Converter angle
unit from RAD to
DEG

D - a floating point
number format (32
bits).

D - a floating point
number format (32
bits).

DDEG
DDEGP:
9 steps

DDEG D10 D20
X000

4.12 Data Operations 2 - FNC 140 to FNC 149
Contents:
□□□ - Not Available FNC 140 to 146
SWAP - Float to Scientific FNC 147
□□□ - Not Available FNC 148 to 149
Symbols list:
D - Destination device.
S - Source device.
m, n- Number of active devices, bits or an operational constant. Additional numeric suffixes

will be attached if there are more than one operand with the same function e.g. D1, S3 or
for lists/tabled devices D3+0, S+9 etc.

MSB -Most Significant Bit, sometimes used to indicate the mathematical sign of a number, i.e.
positive = 0, and negative = 1.

LSB - Least Significant Bit.
Instruction modifications:
□□□ - An instruction operating in 16 bit mode, where □□□ identifies the instruction

mnemonic.
□□□P - A 16 bit mode instruction modified to use pulse (single) operation.
D□□□ - An instruction modified to operate in 32 bit operation.
D□□□P - A 32 bit mode instruction modified to use pulse (single) operation.

★ - A repetitive instruction which will change the destination value on every scan unless
modified by the pulse function.

☆- An operand which cannot be indexed, i.e. The addition of V or Z is either invalid or will
have no effect to the value of the operand.

4.12.1 SWAP (FNC 147)

Contents:
The upper byte and the lower byte of the source
device are swapped.
This instruction is equivalent to operation 2 of FNC
17 XCH
Points to note:
a) In single word (16 bit) operation the upper and lower byte of the source device are

exchanged.
b) In double word (32 bit) operation the upper and lower byte of each or the two 16 bit

devices are exchanged.
Result of DSWAP (P) D10:

Values are in Hex for clarity Before DSWAP After DSWAP
Byte 1 1FH 8BH

D10
Byte 2 8BH 1FH
Byte 1 C4H 35H

D11
Byte 2 35H C4H

c) If the operation of this instruction is allowed to execute each scan, then the value of the

source device will swap back to its original value every other scan. The use of the pulse
modifier or an interlock program is recommended.

Operands
Mnemonic Function

S
Program steps

SWAP
FNC 147 (Byte
Swap) ★

The high and low byte of
the Designated devices
are exchanged

KnY, KnM,
KnS, T, C, D, V,
Z

SWAP,SWAPP: 5 steps
DSWAP, DSWAPP: 9 steps

X000
SWAP P D10

4.13 Position instruction – FNC 156 to FNC 159
Contents:
□□□ - Not Available FNC 150 to 155
ZRN - reset to Zero point FNC 156
PLSV - variable speed pulse output FNC 157
DRVI - increment positioning FNC 158
DRVA - absolute positioning FNC 159
Symbols list:
D - Destination device.
S - Source device.
m, n- Number of active devices, bits or an operational constant. Additional numeric suffixes

will be attached if there are more than one operand with the same function e.g. D1, S3 or
for lists/tabled devices D3+0, S+9 etc.

MSB - Most Significant Bit, sometimes used to indicate the mathematical sign of a number, i.e.
positive = 0, and negative = 1.

LSB - Least Significant Bit.
Instruction modifications:
□□□ - An instruction operating in 16 bit mode, where □□□ identifies the instruction

mnemonic.
□□□P - A 16 bit mode instruction modified to use pulse (single) operation.
D□□□ - An instruction modified to operate in 32 bit operation.
D□□□P - A 32 bit mode instruction modified to use pulse (single) operation.

★ - A repetitive instruction which will change the destination value on every scan unless
modified by the pulse function.

☆ - An operand which cannot be indexed, i.e. The addition of V or Z is either invalid or will
have no effect to the value of the operand.

4.13.1 ZRN (FNC 156)

 As for FNC158（DRVI）and FNC159（DRVA）, PLC will control the present value to increase

or decrease with the self-produced forward/reverse pulse and store the updated value to the
register (Y000：[D8141，D8140]， Y001：[D8143,D8142]). By these values, PLC will always
know the machine position. However, when the power is turned off, the data will be lost.
Consequently, in order to solve the problem, it is necessary to execute FNC156（ZRN）as
machine is ON or is initially set to store the zero point data to PLC.

a) Users may specify zero return speed [S1] as, 16-bit 10 to 32,767Hz or 32-bit 10 to
100kHz.

b) Users may specify the creep speed [S2] of 10 to 32,767Hz
c) If any device other than an input relay (X) is specified for the Near point signal [S3] it will

be affected by the operation cycle of the PLC and the dispersion of the zero point may be
large.

d) Only Y000 or Y001 can be used for the pulse output [D].

Output function of this instruction:
If M8140 is set to ON, the reset signal will be sent to the servo motor when the returning to zero
point is completed.
The reset signal differs from various pulse output:

Pulse output [Y000]－> reset signal [Y002]
Pulse output [Y001]－> reset signal [Y003]

Operands
Mnemonic Function

S1 S2 S3 D
Program steps

ZRN
FNC 156

Return to
zero-point after
machine ON or
initial setting.

K,H,KnY, KnM,
KnS, T, C, D, V,
Z

X,Y,M,S Y ZRN:9 steps
DZRN:17 steps

ZRN S1· S2· S3· D·

 The execution sequence for this instruction:

a) As the instruction is enabled, the machine will move at the speed S1 set.
 In the zero point reset progress, the machine will stop as the enabling terminal is OFF.
 If the enabling terminal is OFF and pulse output monitor device (Y000: M8147; Y001:

M8148) is on, the machine will not accept such instruction.
b) When near signal (DOG) is ON from OFF, the machine will move at creeping speed S2·.
c) AS near signal (DOG) is OFF from and pulse output stops, the data ‘0’ will be written to

present register (Y000：[D8141，D8140]，Y001：[D8143，D8142]). When M8140 is ON,
PLC will send out reset signal. After reset is finished, the M8029 will be ON, as well as
pulse output monitor device (Y000: M8147; Y001: M8148) will be OFF.

Related device number:
D8141 (upper digit) & D8140 (lower digit): Current value register of Y000 (32-bit)
D8143 (upper digit) & D8142 (lower digit): Current value register of Y001 (32-bit)
M8145: Y000 pulse output stop (immediate)
M8146: Y001 pulse output stop (immediate)
M8147: Y000 pulse output monitor (BUS/READY)
M8148: Y001 pulse output monitor (BUS/READY)

Consideration:
Dog search function is not supported. Start zero return from the front side of the Near point
signal.
In Zero point reset, the present value in register (Y000：[D8141，D8140]，Y001：[D8143，D8142])
will decrease to 0.
Attention should be paid to the instruction drive timing.

4.13.2 PLSV (FNC 157)

 This is a variable speed output pulse instruction, with a rotation direction output.

a) Users may use output pulse frequencies [S1] of, 16-bit 1 to 32,767Hz/-1 to 32,767Hz or
32-bit 1 to 100kHz/-1 to 100kHz.

b) Only Y000 or Y001 can be used for the pulse output [D1].
Because of the nature of the high speed output, transistor type output units should be
used with this instruction. Relay type outputs will suffer a greatly reduced life, and will
cause false outputs to occur.

c) Rotation direction signal output [D2} operated as follows: if [D2] = OFF, rotation = negative,
if [D2] = ON, rotation = positive.

 The pulse frequency [S] can be changed even when pulses are being output.
 Acceleration/deceleration are not performed at start/stop. If cushion start/stop is required,

increase or decrease the output pulse frequency [S] using the FNC67 RAMP instruction.
 If the instruction drive contact turns off while pulses are output, the machine will stop directly but

not decelerate to 0.
 Related device numbers.

D8141 (upper digit) & D8140 (lower digit): Current value register of Y000 (32-bit)
D8143 (upper digit) & D8142 (lower digit): Current value register of Y001 (32-bit)
M8145 : Y000 pulse output stop (immediate)
M8146 : Y001 pulse output stop (immediate)
M8147 : Y000 pulse output monitor (BUS/READY)
M8148 : Y001 pulse output monitor (BUS/READY)

Attention should be paid to the instruction drive timing.

Operands
Mnemonic Function

S D1 D2
Program steps

PLSV
FNC 157

Variable speed
pulse output

K,H,KnY,
KnM,
KnS, T, C,
D, V, Z

Y X,Y,M PLSY:7 steps
DPLSY:13 steps

PLSV S· D1· D2·

4.13.3 DRVI (FNC 158)

 This instruction is for single speed positioning in the form of incremental movements.
a) The maximum number of pulses [S1] available are: 16-bit -32,768 to 32,767 pulses or

32-bit. -2,147,483,648 to 2,147,483,648 pulses.
b) Users may use output pulse frequencies [S2], 16-bit 10 to 32,767Hz or 32-bit 10 to

100 kHz.
c) Only Y000 or Y001 can be used for the pulse output [D1].

Because of the nature of the high speed output, transistor type output units should be
used with this instruction. Relay type outputs will suffer a greatly reduced life, and will
cause false outputs to occur.

d) Rotation direction signal output [D2} operated as follows: if [D2] = OFF, rotation =
negative, if [D2] = ON, rotation = positive.

 Related Device:

D8141 (upper digit) & D8140 (lower digit): Current value register of Y000 (32-bit)
D8143 (upper digit) & D8142 (lower digit): Current value register of Y001 (32-bit)
In reverse, the present value in register will decrease.

 If the contents of an operand are changed while the instruction is executed, it is not reflected on
the operation. The new contents become effective when the instruction is next driven.

 If the instruction drive contact turns off while the instruction is being executed, the machine
decelerates and stops. At this time the execution complete flag M8029 does not turn ON.

 Once the instruction drive contact is off, re-drive of the instruction is not possible while the pulse
output flag (Y000 : [M8147] Y001 : [M8148]) is ON.

 For operation in the incremental drive method, the travel distance from the current position is
specified with either a position or a negative symbol.

 The acceleration and deceleration time is set by D8148.

Operands
Mnemonic Function

S1 S2 D1 D2
Program steps

DRVI
FNC 158

Increment
positioning

K,H,KnY, KnM,
KnS, T, C, D, V,
Z

Y Y,M,
S

DRVI:9 steps
DDRVI:17 steps

DRVI S1· S2· D1· D2·

4.13.4 DRVA (FNC 159)

 This instruction is for single speed positioning using a zero home point and absolute

measurements.
a) The target position for absolute positioning [S1] can be: 16-bit -32,768 to 32,767 pulses

or 32-bit -2,147,483,648 to +2,147,483,647 pulses.
b) Users may use output pulse frequencies [S2], 16-bit 10 to 32,767Hz or 32-bit 10 to 100

kHz.
c) Only Y000 or Y001 can be used for the pulse output [D1].

Because of the nature of the high speed output, transistor type output units should be
used with this instruction. Relay type outputs will suffer a greatly reduced life, and will
cause false outputs to occur.

d) Rotation direction signal output [D2} operated as follows: if [D2] = OFF, rotation =
negative, if [D2] = ON, rotation = positive.

 Related Device:

D8141 (upper digit) & D8140 (lower digit): Current value register of Y000 (32-bit)
D8143 (upper digit) & D8142 (lower digit): Current value register of Y001 (32-bit)

In reverse, the present value in register will decrease.

 If the contents of an operand are changed while the instruction is executed, it is not reflected on
the operation. The new contents become effective when the instruction is next driven.

 If the instruction drive contact turns off while the instruction is being executed, the machine
decelerates and stops. At this time the execution complete flag M8029 does not turn ON.

 Once the instruction drive contact is off, re-drive of the instruction is not possible while the pulse
output flag (Y000 : [M8147] Y001 : [M8148]) is ON.

 For operation in the incremental drive method, the travel distance from the current position is
specified with either a position or a negative symbol.

 The acceleration and deceleration time is set by D8148.

Operands
Mnemonic Function

S1 S2 D1 D2
Program steps

DRVA
FNC 159

Absolute
positioning

K,H,KnY, KnM,
KnS, T, C, D, V, Z

Y Y,M,
S

DRVA:9 steps
DDRVA:17 steps

DRVA S1· S2· D1· D2·

4.14 Real Time Clock Control 160 to 169
Contents:
TCMP - Time Compare FNC 160
TZCP - Time Zone Compare FNC 161
TADD - Time Add FNC 162
TSUB - Time Subtract FNC 163
□□□ - Not Available FNC 164 to 165
TRD - Read RTC data FNC 166
TWR - Set RTC data FNC 167
□□□ - Not Available FNC 168 to 169
Symbols list:
D - Destination device.
S - Source device.
m, n- Number of active devices, bits or an operational constant.

Additional numeric suffixes will be attached if there are more than one operand with the
same function e.g. D1, S3 or for lists/tabled devices D3+0, S+9 etc.

MSB - Most Significant Bit, sometimes used to indicate the mathematical sign of a number, i.e.
positive = 0, and negative = 1.

LSB - Least Significant Bit.
Instruction modifications:
□□□ - An instruction operating in 16 bit mode, where □□□ identifies the instruction

mnemonic.
□□□P - A 16 bit mode instruction modified to use pulse (single) operation.
D□□□ - An instruction modified to operate in 32 bit operation.
D□□□P - A 32 bit mode instruction modified to use pulse (single) operation.

★ - A repetitive instruction which will change the destination value on every scan unless

modified by the pulse function.
☆ - An operand which cannot be indexed, i.e. The addition of V or Z is either invalid or will

have no effect to the value of the operand.

4.14.1 TCMP (FNC 160)

Contents:
S1, S2 and S3 represent hours, minutes
and seconds respectively. This time is
compared to the time value in the 3
data devices specified by the head
address S. The result is indicated in
the 3 bit devices specified by the head
address D.
The bit devices in D indicate the
following:
D+0 is set ON, when the time in S is
less than the time in S1, S2 and S3.
D+1 is set ON, when the time in S is equal to the time in S1, S2 and S3.
D+2 is set ON, when the time in S is greater than the time in S1, S2 and S3.

Points to note:
a) The status of the destination devices is kept, even if the TCMP instruction is

deactivated.
b) The comparison is based on the time value specified in the source devices.

- The valid range of values for S1and S+0 is 0 to 23 (Hours).
- The valid range of values for S2and S+1 is 0 to 59 (Minutes).
- The valid range of values for S3and S+2 is 0 to 59 (Seconds).

c) The current time of the real time clock can be compared by specifying D8015 (Hours),
D8014 (Minutes) and D8013 (Seconds) as the devices for S1, S2 and S3 respectively.

Operands
Mnemonic Function

S1 S2 S3 S D
Program

steps
T, C, D Y, M, S TCMP

FNC 160
(Time Compare)

Compares two
times - results of <,
= and > are given

K, H, KnX, KnY,
KnM, KnS, T, C,
D, V, Z

Note:
3 consecutive
devices are used.

TCMP,
TCMPP:
11 steps

TCMP K10 K30 K50 D0 M0
X000

D0
D1
D2

10:30:50

10:30:50>

10:30:50=

10:30:50<

D0
D1
D2

D0
D1
D2

ON

ON

ON

M0

M1

M2

S1 S2 S3 S D

4.14.2 TZCP (FNC 161)

Contents:
S1, S2 and S represent time
values. Each specifying the
head address of 3 data devices.
S is compared to the time
period defined by S1 and S2.
The result is indicated in the 3
bit devices specified by the
head address D.
The bit devices in D indicate
the following:
D+0 is set ON, when the time in

S is less than the times in S1 and S2.
D+1 is set ON, when the time in S is between the times in S1 and S2.
D+2 is set ON, when the time in S is greater than the times in S1 and S2.
Points to note:
a) The status of the destination devices is kept, even if the TCMP instruction is

deactivated.
b) The comparison is based on the time value specified in the source devices.

- The valid range of values for S1and S+0 is 0 to 23 (Hours).
- The valid range of values for S2and S+1 is 0 to 59 (Minutes).
- The valid range of values for S3and S+2 is 0 to 59 (Seconds).

Operands
Mnemonic Function

S1 S2 S D
Program

steps
T, C, D
S1 must be less than or equal to
S2.

Y, M, S TZCP
FNC 161
(Time Zone
Compare)

Compares a time to
a specified time
range - results of <,
= and > are given Note: 3 consecutive devices are used for all

TZCP,
TZCPP:
9 steps

TZCP D20 D30 D0 M0
X000

D0
D1
D2

>

≤

<

D0
D1
D2

D0
D1
D2

ON

ON

ON

M0

M1

M2

D20
D21
D22

D20
D21
D22

D30
D31
D32

D30
D31
D32

≤

S1 S2 S D

4.14.3 TADD (FNC 162)

Contents:
Each of S1, S2 and D specify the head address of 3
data devices to be used a time value.
The time value in S1 is added to the time value in S2,
the result is stored to D as a new time value.
Points to note:
a) The addition is performed according to standard time values. Hours, minutes and

seconds are kept within correct limits. Any overflow is correctly processed.

TADD D10 D20 D30
X000

D10 10(hours)
D11 30(mins)
D12 10(secs)

+
D20 3(hours)
D21 10(mins)
D22 5(secs)

D30 13(hours)
D31 40(mins)
D32 15(secs)

10:30:10 3:10:5 13:40:15
b) If the addition of the two times results in a value greater than 24 hours, the value of the

result is the time remaining above 24 hours.

When this happens the carry flag M8022 is set ON.

c) If the addition of the two times results in a value of zero (0:00:00: 0 hours, 0 minutes, 0
seconds) then the zero flag M8020 is set ON.

d) The same device may be used as a source (S1 or S2) and destination device. In this
case the addition is continually executed; the destination value changing each program
scan. To prevent this from happening, use the pulse modifier or an interlock program.

Operands
Mnemonic Function

S1 S2 D
Program

steps
TADD
FNC 162
(Time Addition)

Adds two time values
together to give a new
time

T, C, D
Note: 3 consecutive devices are used to
represent hours, minutes and seconds
respectively.

TADD,
TADDP:
7 steps

TADD D10 D20 D30

S1 S2 D

X000

4.14.4 TSUB (FNC 163)

Contents:
Each of S1, S2 and D specify the head address of 3 data
devices to be used a time value.
The time value in S1 is subtracted from the time value in
S2, the result is stored to D as a new time value.
Points to note:
a) The subtraction is performed according to standard time values. Hours, minutes and

seconds are kept within correct limits. Any underflow is correctly processed.

TSUB D10 D20 D30
X000

D10 10(hours)
D11 30(mins)
D12 10(secs)

-
D20 3(hours)
D21 10(mins)
D22 5(secs)

D30 7(hours)
D31 20(mins)
D32 5(secs)

10:30:10 3:10:5 7:20:5
b) If the subtraction of the two times results in a value less than 00:00:00 hours, the value

of the result is the time remaining below 00:00:00 hours.

When this happens the borrow flag M8021 is set ON.

c) If the subtraction of the two times results in a value of zero (00:00:00 hours) then the
zero flag M8020 is set ON.

d) The same device may be used as a source (S1 or S2) and destination device. In this
case the subtraction is continually executed; the destination value changing each
program scan.

To prevent this from happening, use the pulse modifier or an interlock program.

Operands
Mnemonic Function

S1 S2 D
Program

steps
TSUB
FNC 163
(Time Subtraction)

Subtracts onetime value from
another to give a new time

T, C, D
Note: 3 consecutive
devices are used.

TSUB,
TSUBP:
7 steps

TSUB D10 D20 D30

S1 S2 D

X000

4.14.5 TRD (FNC 166)

Contents:
The current time and date of the real time clock are
read and stored in the 7 data devices specified by the
head address D.

The 7 devices are set as follows:

Device Meaning value Device Meaning
D8018 Year 2000~2099 → D0 Year
D8017 Month 1~12 → D1 Month
D8016 Date 1~31 → D2 Date
D8015 Hours 0~23 → D3 Hours
D8014 Minutes 0~59 → D4 Minutes
D8013 Seconds 0~59 → D5 Seconds
D8019 Day 0(Sun)~6(Sat) → D6 Day

Operands
Mnemonic Function

D
Program

steps
TRD
FNC 166
(Time Read)

Reads the current value of the
real time clock to a group of
registers

T, C, D
Note: 7 consecutive devices
are used

TRD,
TRDP:
5 steps

X000
TRD D0

4.14.6 TWR (FNC 167)

Contents:
The 7 data devices specified with the head address
S are used to set a new current value of the real time
clock.
The seven devices

Device Meaning Values Device Meaning
D10 Year 0~99 → D8018 Year
D11 Month 1~12 → D8017 Month
D12 Date 1~31 → D8016 Date
D13 Hours 0~23 → D8015 Hours
D14 Minutes 0~59 → D8014 Minutes
D15 Seconds 0~59 → D8013 Seconds
D16 Day 0(Sun)~6(Sat) → D8019 Day

Points to note:
This instruction removes the need to use M8015 during real time clock setting. When
setting the time it is a good idea to set the source data to a time a number of minutes ahead
and then drive the instruction when the real time reaches this value.

Operands
Mnemonic Function

S
Program

steps
TWR
FNC 167
(Time Write)

Sets the real time clock to the value
stored in a group of registers

T, C, D
Note: 7 consecutive devices
are used.

TWR,
TWRP:
5 steps

X000
TWRP D10

TP03 Serial Programmable Controller Appiled Instruction 4

4.15 Gray Codes - FNC 170 to FNC 179
Contents:
GRY - Decimal to Gray Code FNC 170
GBIN - Gray Code to Decimal FNC 171
□□□- Not Available FNC 172 to 177
Symbols list:
D - Destination device.
S - Source device.
m, n- Number of active devices, bits or an operational constant.

Additional numeric suffixes will be attached if there are more than one operand with the
same function e.g. D1, S3 or for lists/tabled devices D3+0, S+9 etc.

MSB - Most Significant Bit, sometimes used to indicate the mathematical sign of a number, i.e.
positive = 0, and negative = 1.

LSB - Least Significant Bit.
Instruction modifications:
□□□ - An instruction operating in 16 bit mode, where □□□ identifies the instruction

mnemonic.
□□□P - A 16 bit mode instruction modified to use pulse (single) operation.
D□□□ - An instruction modified to operate in 32 bit operation.
D□□□P - A 32 bit mode instruction modified to use pulse (single) operation.

★ - A repetitive instruction which will change the destination value on every scan unless

modified by the pulse function.
☆ - An operand which cannot be indexed, i.e. The addition of V or Z is either invalid or will

have no effect to the value of the operand.

TP03 Serial Programmable Controller Appiled Instruction 4

4.15.1 GRY (FNC 170)

Operation:
The binary integer value in S is converted to the
GRAY CODE equivalent and stored at D.

Points to Note:
The nature of gray code numbers allows numeric values to be quickly output without the
need for a strobing signal. For example, if the source data is continually incremented, the
new output data can be set each program scan.

4.15.2 GBIN (FNC 171)

Operation:
The GRAY CODE value in S is converted to the
normal binary equivalent and stored at D.

Points to Note:
This instruction can be used to read the value from a gray code encoder.
If the source is set to inputs X0 to X17 it is possible to speed up the reading time by
adjusting the refresh filter with FNC 51 REFF.

Operands
Mnemonic Function

S D
Program steps

GRY
FNC 170
(Gray Code)

Calculates the
gray code value
of an integer

K, H, KnX, KnY,
KnM, KnS, T, C, D,
V, Z

KnY, KnM, KnS,
T, C, D, V, Z

GRY,GRYP:
5 steps
DGRY,DGRYP
9 steps

Operands
Mnemonic Function

S D
Program steps

GBIN
FNC 171
(Gray Code)

Calculates the
integer value of
a gray code

K, H,
KnX, KnY, KnM, KnS,
T, C, D, V, Z

KnY, KnM,
KnS,
T, C, D, V, Z

GBIN,GBINP:
5 steps
DGBIN,DGBINP:
9 steps

GRY K1234 K3Y10
X000 S D

GBIN K3X20 D10
X000 S D

TP03 Serial Programmable Controller Appiled Instruction 4

4.16 Communication Codes - FNC 190 to FNC 199
Contents:
DTLK - Data Link FNC 190
RMIO - Remote IO FNC 191
TEXT OP07/08 TEXT FNC 192
□□□- Not Available FNC 193 to 199
Symbols list:
D - Destination device.
S - Source device.
m, n- Number of active devices, bits or an operational constant.

Additional numeric suffixes will be attached if there are more than one operand with the
same function e.g. D1, S3 or for lists/tabled devices D3+0, S+9 etc.

MSB - Most Significant Bit, sometimes used to indicate the mathematical sign of a number, i.e.
positive = 0, and negative = 1.

LSB - Least Significant Bit.
Instruction modifications:
□□□ - An instruction operating in 16 bit mode, where □□□ identifies the instruction

mnemonic.
□□□P - A 16 bit mode instruction modified to use pulse (single) operation.
D□□□ - An instruction modified to operate in 32 bit operation.
D□□□P - A 32 bit mode instruction modified to use pulse (single) operation.

★ - A repetitive instruction which will change the destination value on every scan unless

modified by the pulse function.
☆ - An operand which cannot be indexed, i.e. The addition of V or Z is either invalid or will

have no effect to the value of the operand.

TP03 Serial Programmable Controller Appiled Instruction 4

4.16.1 DTLK (FNC 190)

Operation:
This instruction F190 DTLK used by PLC can setup
a small network which enables PLC controlling
other 15 PLC.
While two communication ports are ready for DTLK, only one firstly enabled is available.
Communication frame and baud rate is set through D8120 or D8320, which is controlled by
the different port.

Both the port RS485/ RS232 expansion card (all type is available for expansion)，RS485
port (only built-in port in H type) are available for Data Link. However, both of them can not
be enabled simultaneously.

Item Specification
Communication
standard

EIA RS-485

Baud rate 9600bps～307200bps
Number of slaves Max 15 slaves
Related devices D0～D157，M2000～M3023
Data length for each
slave

Max 64 bits+8 word

Communication cable Insulated twisted cable, 2 lines type,
Total length: 500m (76800bit/s),
1km(38400bit/s)

Operands
Mnemonic Function

K
Program steps

DTLK
FNC 190
(Data link)

Setup a small
network which
enables PLC
controlling other
15 PLCS.

K,H:0,1
0: for built in RS485 port；
1: for RS485 or RS232 expansion card

3 steps

DTLK K
X000

TP03 Serial Programmable Controller Appiled Instruction 4

Wiring:

 Note 1: SHL terminal should be 3 class ground or the production will be

interrupted to error operation because of noise.
 Note 2: Branch of communication cable should not exceed 3.
 Note 3: R represents terminal resistor (120Ω,1/4W).

○ ×

Cable nod
Connector

Related devices:
1） Special relays

Special
relays

Feature Function Description Respond
from

M8400 Read-only Master error The relay will be on as master is
error.

L

M8401 Read-only Slave 1 error The relay will be on as slave 1 is
error.

M/L

M8402 Read-only Slave 2 error The relay will be on as slave 2 is
error.

M/L

… … … … ..
M8414 Read-only Slave 14 error The relay will be on as slave 14 is

error.
M/L

M8415 Read-only Slave 15 error The relay will be on as slave 15 is
error.

M/L

M8416 Read-only state The relay will be on as DTLK is
enabled.

M/L

M8417 Read-only Data Link
mode

The relay will be on as expansion
card is in Data Link.

M/L

M8418 Read-only Data Link
mode

The relay will be on as RS485 port
is in Data Link.

M/L

TP03 Serial Programmable Controller Appiled Instruction 4

2） Data register
Special
relays

Feature Function Description Respond
from

D8173 Read-only Address number Saving its own address number M/L
D8174 Read-only The number of slaves Saving the number of slaves M/L
D8175 Read-only Refreshing range Saving refreshing range (Data Link) M/L
D8176 Write Slave address setting Setting its own address number M/L
D8177 Write Slavers number setting Setting the number of slaves M
D8178 Write Data Link setting Setting refreshing range (Data Link) M
D8179 Read/

write
Retry times Setting retry timess M

D8180 Read/
write

Time-out setting Setting communication time-out
（Time-Out）

M

D8401 Read-only Current communication
scan time

Saving current communication scan
time

M/L

D8402 Read-only Max communication
scan time

Saving Max communication scan
time

M/L

D8403 Read-only Error times for master Error times for master L
D8404 Read-only Error times for slave 1 Error times for slave 1 M/L
D8405 Read-only Error times for slave 2 Error times for slave 2 M/L

… … … … ..
D8411 Read-only Error times for slave 8 Error times for slave 8 M/L

… … … … ..
D8417 Read-only Error times for slave 14 Error times for slave 14 M/L
D8418 Read-only Error times for slave 15 Error times for slave 15 M/L
D8419 Read-only Error code for master Error code for master L
D8420 Read-only Error code for slave 1 Error code for slave 1 M/L
D8421 Read-only Error code for slave 2 Error code for slave 2 M/L

… … … … ..
D8427 Read-only 从 Error code for slave 8从 Error code for slave 8 M/L

… … … … ..
D8433 Read-only Error code for slave 14 Error code for slave 14 M/L
D8434 Read-only Error code for slave 15 Error code for slave 15 M/L

Setting:
When the program is in operation, or TP 03 is power ON, all the setting for Data Link will
take effect.

1） Setting the slaver address (D8176)
Set 0～15 to the special data register D8176, 0 is for master, and 1～15 is for slave.

2） Setting the slavers number (D8177)
Set 1～15 to the special data register D8177(default: 7). It is unnecessary for slavers
The slavers number should be set according to different condition in order to raise the
refreshing speed.

TP03 Serial Programmable Controller Appiled Instruction 4

3） Setting the refresh range (D8178)
Set 0～2 to special data register D8178 (default: 0). It is unnecessary for slaves.

D8178 0 1 2
Data Link mode Mode 0 Mode 1 Mode 2

Bit device (M) 0 point 32 point 64 point Refreshing
range Word device (D) 4 point 4 point 8 point

The devices to be refreshed under different mode:

Mode 0 Mode 1 Mode 2
Address

 (M) （D） （M） （D） （M） （D）
No 0 － D0~D3 M2000~M2031D0~D3 M2000~M2063 D0~D7
No 1 － D10~D13 M2064~M2095D10~D13 M2064~M2127 D10~D17
No 2 － D20~D23 M2128~M2159D20~D23 M2128~M2191 D20~D27
No 3 － D30~D33 M2192~M2223D30~D33 M2192~M2255 D30~D37
No 4 － D40~D43 M2256~M2287D40~D43 M2256~M2319 D40~D47
No 5 － D50~D53 M2320~M2351D50~D53 M2320~M2383 D50~D57
No 6 － D60~D63 M2384~M2415D60~D63 M2384~M2447 D60~D67
No 7 － D70~D73 M2448~M2479D70~D73 M2448~M2511 D70~D77
No 8 － D80~D83 M2512~M2543D80~D83 M2512~M2575 D80~D87
No 9 － D90~D93 M2576~M2607D90~D93 M2576~M2639 D90~D97
No A － D100~D103 M2640~M2671D100~D103M2640~M2703 D100~D107
No B － D110~D113 M2704~M2735D110~D113 M2704~M2767 D110~D117
No C － D120~D123 M2768~M2799D120~D123M2768~M2831 D120~D127
No D － D130~D133 M2832~M2863D130~D133M2832~M2895 D130~D137
No E － D140~D143 M2896~M2927D140~D143M2896~M2959 D140~D147
No F － D150~D153 M2960~M2991D150~D153M2960~M3023 D150~D157

4） setting retry times (D8179)

Set 0～10 to special data register D8179 (default: 3). It is unnecessary for slaves. If
the master retry communication with the slave for more than the set times, the slave
will be in communication error.

5） setting time out (D8180)
Set 5～255 to special data register D8180 (default: 5), the product of such value and
10 is the waiting time for communication time out (ms).

6） Current communication scan time (D8401)
The product of such value and 10 is the current communication scan time (ms).

7） Max communication scan time (D8402)

The example program for setting the said devices:

TP03 Serial Programmable Controller Appiled Instruction 4

TP03 Serial Programmable Controller Appiled Instruction 4

Error code:
When there is error, the special relays M8400～M8415 will indicates the error condition
and the error code will be stored in special data registers (D8419～D8434).

Error
code

Error
Error
addre

ss

Check
addre

ss
Description Check point

01H Communication
time out error

L M There is no responding as the
master sends the request to
slave and time out.

Wiring, power
supply and run/
stop state

02H Communication
number error

L M Address is not set according to
the certain relations between
master and slave

Wiring

03H Communication
counting error

L M The data in communication
counter does not conform to
according to the certain
relations between master and
slave

Wiring

04H Communication
frame error

L M, L Communication frame of slave
is error

Wiring and DTLK
setting

11H Communication
over time error

M L After the slave responses to
master, the master does not
send another request to
slavers.

Wiring, power
supply and run/
stop state

14H Communication
frame error

M L Communication frame of
master is error

Wiring and DTLK
setting

21H Without slave L L *1 Address in the net is wrong Address setting
22H Address error L L *1 Slave address does not

comply with the certain
relations between master and
slave

Wiring

23H Communication
counting error

L L *1 The data in communication
counter does not conform to
according to the certain
relations between master and
slave

Wiring

31H Receiving
communication
parameter error

L L *2 Master send request before
the slave accepts the set
parameter.

Wiring, power
supply and run/
stop state

32H Other error L L *1 Communication instruction
error

Net setting

 M: master L: slave
 1: another slave 2: Individual slave

TP03 Serial Programmable Controller Appiled Instruction 4

Communication Timing Sequence and the Time Required for Transmission
‧ The communication for master-station and slave-stations is not synchronous with

the scanning cycle of master-station.
‧ The master station will perform the linked data exchange and update the

communication flag at the scan cycle after the communication completed.
Communication timing sequence diagram and communication delay diagram.
In Data Link net, there will be delay for receiving data. Please refer to following figure for
communication timing sequence:
For example: the M2064 for slave 1 is controlled by X010. The state of M2064 will be sent
to other nod of the net as the instruction DTLK is enabled.

The time required to complete transmission
In data-link mode, the time T required for the master-station to complete communication
with all slave-station can be devised as follows (not spend the SCAN TIME of
master-station):

 T＝Ta＋Tc＋[Tb＋Tn＋Tc＋T0]*n1{＋[Tb＋Tn＋D8180*10]*n2}；
Ta : the transmission time for master sending instruction for net configuration to

TP03 Serial Programmable Controller Appiled Instruction 4

slave.
Tb : the transmission time for master sending instruction for data-exchange to

slave.
Tc : the transmission time for the net exchanging data (differs from different DTLK

mode).
T0 : the time for master detecting communication states (0~1 SCAN TIME)
Tn: the time for slave detecting communication states (0~1 SCAN TIME)
(n1+n2): the number of DTLK slave set in master (D8177=1~15), n1: actual slave
number, n2: the number of the slave which is not recognized by master (0~15).
D8180 is timeout value.

Delay time:

Tu： the time required for PLC to detect the input status (max. 1 SACN TIME)
Tv： the time between the PLC received input state and program started to be

scanned.
Tw: the time for operation result send out (max net scan time T）；
Tx: the time between the data received and data written to registers (max. 1 scan

time);
Ty： the time between program operated to output (1scan time)；
Tz： output port delay

The transmission time under different Baud rate:

Tc（ms）
Baud

rate(bps)
Ta

（ms）
Tb（ms） DTLK mode

0
DTLK mode

1
DTLK mode

2
9600 21.8 12.6 31.0 40.1 67.6

19200 10.9 6.3 15.5 20.1 33.8
38400 5.5 3.2 7.8 10.0 16.9
57600 3.7 2.1 5.2 6.7 11.3
76800 2.8 1.6 3.9 5.0 8.5

128000 1.7 1.0 2.4 3.0 5.1
153600 1.4 0.8 2.0 2.5 4.3
307200 0.7 0.4 1.0 1.3 2.2

TP03 Serial Programmable Controller Appiled Instruction 4

4.16.2 RMIO (FNC 191)

Operation:
This instruction F191 RMIO used by PLC can setup a small
network which enables PLC controlling other 4 PLCs.
While two communication ports are ready for RMIO, only
the one firstly enabled is available.
Communication frame and baud rate is set through D8120 or D8320, which is controlled by
the different port.

 Note 1: When a PLC is set as a slave in RMIO mode, it is used as a expansion I/O for

master and only RMIO instruction is available for operation.
 Note 2: As long as PLC as a slave in RMIO mode, only stop the operation of program

can switch the RMIO to other mode.
In Remote I/O mode, the master PLC can control other 4 PLCs.

Item Description
standard EIA RS485
Baud rate 9600bps～307200bps
Number
of slaves

Max 4 slave

Slave 1 Input: 36 points (M4200～M4235)；Output: 24point (M4600～M4623)
Slave 2 Input: 36 points (M4240～M4275)；Output: 24point (M4624～M4647)
Slave 3 Input: 36 points (M4280～M4315)；Output: 24point (M4648～M4671)

Related
devices

Slave 4 Input: 36 points (M4320～M4355)；Output: 24point (M4672～M4695)
Cable Insulated twisted cable, 2 lines type,

Total length: 500m (76800bit/s), 1km(38400bit/s)
Both the port RS485/ RS232 expansion card (all type is available for expansion)，RS485
port (only built-in port in H type) are available for Data Link. However, both of them can not
be enabled simultaneously.
Note: Only basic unit can be set as a slave in RMIO mode.

Operands
Mnemonic Function

K
Program steps

RMIO
FNC 191
(Remote IO)

setup a small
network which
enables PLC
controlling other
4 PLCS.

K, H:0,1
0: for built in RS485 port；
1: for RS485 or RS232 expansion card

3 steps

RMIO K
X000

TP03 Serial Programmable Controller Appiled Instruction 4

Related devices:
1） Special relays

Special
relays

Feature Function Description Respond
from

M8335 Read only
Communication

state
ON as RMIO communication
is enabled

M/L

M8336 Read only Master error ON as master error L
M8337 Read only Slave 1 error On as slave 1 error M/L
M8338 Read only Slave 2 error On as slave 2 error M/L
M8339 Read only Slave 3 error On as slave 3 error M/L
M8340 Read only Slave 4 error On as slave 4 error M/L

M8341 Read only
RMIO mode Expansion card is in RMIO

mode
M/L

M8342 Read only RMIO mode RS485 port is in RMIO mode M/L

2） Data register D
Special
relays

Feature Function Description Respond
from

D8373 Read only Address number Saving its own address number M/L
D8374 Read only The number of slaves Saving the number of slaves M/L
D8376 Write Address number setting Setting its own address number M/L

D8377 Write
Setting the number of
slaves

setting the number of slaves M

D8379 Read/write Retry times Setting retry times M

D8380 Read/write Time-out setting
Setting communication time-out
（Time-Out）

M/L

D8331 Read only
Current communication
scan time

Saving current communication
scan time

M

D8332 Read only
Max communication
scan time

Saving Max communication scan
time

M

D8333 Read only Master error times Master error times L
D8334 Read only Slave 1 error times Slave 1 error times M/L
D8335 Read only Slave 2 error times Slave 2 error times M/L
D8336 Read only Slave 3 error times Slave 3 error times M/L
D8337 Read only Slave 4 error times Slave 4 error times M/L
D8338 Read only Master error code Master error code L
D8339 Read only Slave 1 error code Slave 1 error code M/L
D8340 Read only Slave 2 error code Slave 2 error code M/L
D8341 Read only Slave 3 error code Slave 3 error code M/L
D8342 Read only Slave 4 error code Slave 4 error code M/L

TP03 Serial Programmable Controller Appiled Instruction 4

Setting:
When the program is in operation, or PLC is power ON, all the setting for Remote I/O will
take effect.

1） Setting the slaver address (D8376)
Set 0～4 to the special data register D8376, 0 is for master, and 1～4 is for slave.

2） Setting the slavers number (D8377)
Set 1～4 to the special data register D8377(default: 4). It is unnecessary for slavers
The slavers number should be set according to different condition in order to raise the
refreshing speed.

The related devices for Remote I/O:
In Remote I/O mode, the related devices for master:

 Master Slave 1
Input M4200 ～

M4235
 X000~X043

Slave
1 Output M4600 ～

M4623
 Y000~Y027 Slave 2

Input M4240 ～
M4275

 X000~X043
Slave

2 Output M4624 ～
M4647

 Y000~Y027 Slave 3

Input M4280 ～
M4315

 X000~X043
Slave

3 Output M4648 ～
M4671

 Y000~Y027 Slave 4

Input M4320 ～
M4355

 X000~X043
Slave

4 Output M4672 ～
M4695

 Y000~Y027

Wiring:

 Note 1: SHL terminal should be 3 class ground or the production will be interrupted to
error operation because of noise.

TP03 Serial Programmable Controller Appiled Instruction 4

 Note 2: Branch of communication cable should not exceed 3.
 Note 3: R represents terminal resistor (120Ω,1/4W).

Communication sequence and the time required for transmission

The Time Required for Transmission
The communication of master-station to slave-station, the data exchange of remote I/O and
the update of communication flag are synchronous with the scan cycle of master station.
The process (1 communication period) will increase the SCAN TIME of master-station
When there is error in communication between master and slave, Remote I/O
communication and PLC operation will stop and enter abnormal condition.

When an error occurs on the communication between the master station and slave-station,
the remote I/O communication and PLC operation will be stopped and enter error mode.
Besides, all communication flag of master-station and slave-station are set to OFF.
Possible cause of error is as follows:

 CRC error
 Slave in STOP mode or ERROR mode
 Slave not connected or connection wire broken

When the master-station is in STOP mode or ERROR mode, it will not communicate with
any slave-station. The settings for communication format between master and slave are
not same.

TP03 Serial Programmable Controller Appiled Instruction 4

Communication sequence for slave
The communication of slave to master is asynchronous with the scan time of slave.
After communication between master and slave is finished, the Remote I/O data and
communication flag will be refreshed, which will last about 0.2ms.

The time required for transmission
In remote I/O mode, the time T (the communication period, this period will be included in
the master station SCAN TIME) required for master-station to complete the communication
with all slave-stations is as follows :

Baud
Rate
(bps)

Communication
time for each
slave, Tn (ms)

Time out,
t (ms)

Communication
time for master,
T(ms)

Normal
communication
time for master
and 4 slaves
(ms)

9600 42 168
19200 21 84
38400 11 44
57600 7 28
76800 6 24

128000 4 16
153600 3 12
307200 2

D8380*10 Tn*n1＋t*n2
(n1: normal slave
number; n2:
slave number for
time out)

8

If there is communication error in slave, the communication time will be increased
repeatedly (Tn will be added to the time for each error)

TP03 Serial Programmable Controller Appiled Instruction 4

Delay time:
When the remote I/O is receiving data, there will be some delay as in the following figure.

X010
M4600

RMIO 0

X000

I/O I/O I/O

One scam time for master

T1 T2 T3

T5T4

Program operation and RMIO data exchanging

Input terminal

Input logical side

Data memory X010

Data memory M4600

Output logical side

Output terminal
（output Y0 on slave 1）

I/O I/O I/OI/OI/O I/OSlave scan

T1: delay for input (response time for OFF to ON)
T2: time for master writing data to coil register (max 1 scan time)
T3: program operation and output time
T4: time between the slave received data to output terminal
T5: delay for output (response time for ON to OFF)

TP03 Serial Programmable Controller Appiled Instruction 4

Error code:
When there is error, the special relays M8400～M8415 will indicates the error condition
and the error code will be stored in special data registers (D8419～D8434).

Error
code

Error
Error
addre

ss

Check
addre

ss
Description Check point

01H Communication
time out error

L M There is no responding as the
master sends the request to
slave and time out.

Wiring, power
supply and run/
stop state

02H Communication
number error

L M Address is not set according to
the certain relations between
master and slave

Wiring

03H Communication
counting error

L M The data in communication
counter does not conform to
according to the certain relations
between master and slave

Wiring

04H Communication
frame error

L M, L Communication frame of slave is
error

Wiring and
RMIO setting

11H Communication
over time error

M L After the slave responses to
master, the master does not
send another request to slavers.

Wiring, power
supply and run/
stop state

14H Communication
frame error

M L Communication frame of master
is error

Wiring and
RMIO setting

21H Without slave L L *1 Address in the net is wrong Address setting
22H Address error L L *1 Slave address does not comply

with the certain relations
between master and slave

Wiring

23H Communication
counting error

L L *1 The data in communication
counter does not conform to
according to the certain relations
between master and slave

Wiring

24H Communication
frame error

L L *1 Communication frame of slave is
error

Wiring and
RMIO setting

 M: master L: slave

 *1: another slave

TP03 Serial Programmable Controller Appiled Instruction 4

4.16.3 TEXT (FNC 192)

Operation:
This instruction should be used with OP07/08. After
F192 is enabled, the value 13 will be written to data
register D8284, after OP07/08 saving the ‘13’ in D8284,
the value 13 also will be written to D8285 by OP07/08
itself.
As F192 is enabled, the certain text file will be saved to D8280 and D8281 (D8280 is for the
file to be displayed in the first line of OP07/08, D8281 is for the second one) and the value
to be displayed will be saved toD8295 and D8296.
The value in D8295 will be displayed in the ‘#’position of the first line, while the value in
D8296 of the second line.
When there is ‘?’ on LCD, you can input data, the input data for first line will be saved in the
D register (Number =value in D8295 + 1). As for the second line, the input data in position
‘?’ will be saved in D register (Number =value in D8296 + 1).
‘#’ and ‘?’ can be placed anywhere in the text file. However, only the former 5 ones can be
set as inputs or outputs.

 Example:
LCD
position

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 Text file 1：
D
register

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Content L e n g t h : # # . # # # c m
 Text file 2：
D
register

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Content W e i g t h : # # . # # # k g
 Text file 3：
D
register

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029

Content U n i t p r i c e : $? ? ? ? ?

Operands
Mnemonic Function

D S n
Program steps

TEXT
FNC 192

display text
(including
register data) on
the P07/08 LCD

D D

K, H: 1,2 7 steps

TEXT D S n
X000

TP03 Serial Programmable Controller Appiled Instruction 4

TEXT D200 D300 K1
M100

MOV K2 D200
X000

MOV K12345 D300 Weight : 12.345 kg

Information on OP07/08 LCD

 Description:
 1，X000 ON, 2 will be moved to D200 while 12345 will be moved toD300；
 2，when M100 is ON, TEXT instruction is enabled. D8284 defaults 13，D200 will be written to
D8280; 300 to D8285.Then OP07/08 will enter F192 mode.

 3，F192 will operate for the first time. As D8280＝D200＝2, OP07/08 will display the file 2 on
the first line of LCD. Because there is a ‘#’ in the file 2, 12345 in D300 will be displayed in the
place of ‘#’.

TEXT D200 D300 K2
M100

MOV K2 D200
X000

MOV K12345 D300 Weight : 12.345 kg

Information on OP07/08 LCD

Unit price : $?????

 Description:
 1，X000 ON, 2 will be moved to D200 while 12345 will be moved to D300；
 2，When M100 is ON, TEXT instruction is enabled. D8284 defaults 13，D200 will be written to
D8280; sum of data in D200 and 1 will be written to D8281, 300 to D8285, D8286.Then OP07/08
will enter F192 mode.

 3，F192 will operate for the first time. As D8280＝D200＝2, D8281=3, OP07/08 will display the
file 2 on the first line of LCD and file 3 on the second line. Moreover, 12345 in D300 will be
displayed in the place of ‘#’ and the input data by the keys will be stored in D301.

TP03 Serial Programmable Controller Appiled Instruction 4

4.17 Inline Comparisons - FNC 220 to FNC 249
Contents:
LD□ - LD compare FNC 224 to 230
AND□ - AND compare FNC 232 to 238
OR□ - OR compare FNC 240 to 246
Symbols list:
D - Destination device.
S - Source device.
m, n- Number of active devices, bits or an operational constant.

Additional numeric suffixes will be attached if there are more than one operand with the
same function e.g. D1, S3 or for lists/tabled devices D3+0, S+9 etc.

MSB - Most Significant Bit, sometimes used to indicate the mathematical sign of a number, i.e.
positive = 0, and negative = 1.

LSB - Least Significant Bit.
Instruction modifications:
□□□ - An instruction operating in 16 bit mode, where □□□ identifies the instruction

mnemonic.
□□□P - A 16 bit mode instruction modified to use pulse (single) operation.
D□□□ - An instruction modified to operate in 32 bit operation.
D□□□ - A 32 bit mode instruction modified to use pulse (single) operation.

★ - A repetitive instruction which will change the destination value on every scan unless

modified by the pulse function.
☆ - An operand which cannot be indexed, i.e. The addition of V or Z is either invalid or will

have no effect to the value of the operand.

TP03 Serial Programmable Controller Appiled Instruction 4

4.17.1 LD compare (FNC 224 to 230)

Operation:
The value of S1 and S2 are tested
according to the comparison of the
instruction. If the comparison is
true then the LD contact is active.
If the comparison is false then the
LD contact is not active.
Points to note:
The LD comparison functions can
be placed anywhere in a program that a standard LD instruction can be placed. I.e., it
always starts a new block.

F No 16 bit 32 bit Active when Inactive when
224 LD= D LD= S1=S2 S1≠S2
225 LD> D LD> S1>S2 S1≤S2
226 LD< D LD< S1<S2 S1≥S2
228 LD<> D LD<> S1≠S2 S1=S2
229 LD≤ D LD≤ S1≤S2 S>1S2
230 LD≥ D LD≥ S1≥S2 S1<S2

Operands
Mnemonic Function

S D
Program

steps
LD□
(LoaD compare)
where□ is =, >,
<, <>, , 　 　

Initial comparison
contact. Active when the
comparison S1 □ S2 is
true

K,H, KnX, KnY, KnM,
KnS, T, C, D, V, Z

LD□:
5 steps
DLD□:
9 steps

TP03 Serial Programmable Controller Appiled Instruction 4

4.17.2 AND compare (FNC 232 to 238)

Operation:
The value of S1 and S2 are tested
according to the comparison of the
instruction. If the comparison is true
then the AND contact is active. If the
comparison is false then the AND
contact is not active.
Points to note:
The AND comparison functions can be
placed anywhere in a program that a
standard AND instruction can be placed. I.e., it is a serial connection contact.

F No 16 bit 32 bit Active when Inactive when
232 AND= D AND = S1=S2 S1≠S2
233 AND > D AND > S1>S2 S1≤S2
234 AND < D AND < S1<S2 S1≥S2
236 AND<> D AND<> S1≠S2 S1=S2
237 AND≤ D AND≤ S1≤S2 S>1S2
238 AND≥ D AND≥ S1≥S2 S1<S2

Operands
Mnemonic Function

S D
Program

steps
AND□
(AND compare)
where□ is =, >,
<, <>, ≤, ≥

Serial comparison
contact. Active when the
comparison S1 □ S2 is
true.

K,H, KnX, KnY, KnM,
KnS, T, C, D, V, Z

AND□:
5 steps
DAND□:
9 steps

TP03 Serial Programmable Controller Appiled Instruction 4

4.17.3 OR compare (FNC 240 to 246)

Operation:
The value of S1 and S2 are tested
according to the comparison of the
instruction. If the comparison is true
then the OR contact is active. If the
comparison is false then the OR
contact is not active.
Points to note:
The OR comparison functions can be placed anywhere in a program that a standard OR
instruction can be placed. I.e., it is a parallel connection contact.

F No 16 bit 32 bit Active when Inactive when
240 OR= D OR= S1=S2 S1≠S2
241 OR> D OR> S1>S2 S1≤S2
242 OR< D OR< S1<S2 S1≥S2
244 OR<> D OR<> S1≠S2 S1=S2
245 OR≤ D OR≤ S1≤S2 S>1S2
246 OR≥ D OR≥ S1≥S2 S1<S2

Operands
Mnemonic Function

S D
Program

steps
OR□
(OR compare)
where□ is =, >, <,
<>, ≤, ≥

Parallel Comparison contact.
Active when the comparison
S1 □ S2 is true.

K,H, KnX, KnY, KnM,
KnS, T, C, D, V, Z

OR□:
5 steps
DOR□:
9 steps

TP03 Serial Programmable Controller Special relay 5

 20-1

5 Special relay..2
5.1 PC status (M) ..2
5.2 Clock device（M） ..2
5.3 Operation flags（M） ..3
5.4 PC status（D） ...3
5.5 RTC（D） ..3
5.6 PC operation mode（M） ..4
5.7 PC mode（D） ...5
5.8 Step ladder flagss（M） ...6
5.9 Step ladder flags（D） ...6
5.10 Interruption disable（M）..7
5.11 UP/DOWN counting set device（M）...7
5.12 Register capacity（D） ..8
5.13 Devices（M） ..9
5.14 Error detection（D）..9
5.15 Communication and link（M）I ..9
5.16 Communication and link（D）I ...10

TP03 Serial Programmable Controller Special relay 5

 20-2

5 Special relay

5.1 PC status (M)

Device
No.

Function Operation

8000 RUN monitor
(NO contact)

8001 RUN monitor
(NC contact)

8002 Initial pulse
(NO contact)

8003 Initial pulse
(NC contact)

RUN input

M8061

M8000

M8001

M8002

M8003
8004 Error occurrence ON when one or more flags of

M8060,8061,M8063~8067 are ON
8005 Battery voltage too low ON when battery voltage is too low.
8006 Latch for batter low

voltage
ON when battery voltage is too low.
OFF when a new battery is installed.

5.2 Clock device（M）

Device No. Function Operation
8010
8011 10ms period oscillator 5ms ON/5ms OFF
8012 100ms period oscillator 50ms ON/50ms OFF
8013 1s period oscillator 0.5s ON/0.5s OFF
8014 1min period oscillator 30s ON/30s OFF
8015 Clock stop and set Stop timing and reset the clock
8016 Stop displaying clock time Stop displaying clock time
8017 +/-30s offset +/-30 s offset for internal time
8018 RTC detection Check whether RTC is enabled.
8019 RTC error Clock is set out of the range.

TP03 Serial Programmable Controller Special relay 5

 20-3

5.3 Operation flags（M）

5.4 PC status（D）

5.5 RTC（D）

Device No. Function Operation
8020 Zero On when the result of add or subtract is 0
8021 Borrow On when the result of subtract is smaller than the

minimum negative number of the system
8022 Carry ON when the result of add should be carry
8023
8024 BMOV direction (F15) 0: forward,1:reverse
8026 RAMP mode (F67)0: reset, 1: keep
8027 PR mode （F77）0: 8bytes;1: 16bytes
8029 Instruction execution ends ON when the instruction as DSW(F72) is finished

Device No. Function Operation
8001 TP03 type 0x

8002 Version 0x100 represents 1.00 version
8003 ID number Read only
8004 Error code
8005 Warn code
8006 Program

capacity

Device
No.

Function Operation

8010 Present scan time(0.1ms
unit)

8011 Min scan time
8012 Max scan time
8013 Second (0~59)
8014 Minute (0~59)
8015 Hour
8016 Day
8017 Month
8018 Year (00~99)
8019 Week

TP03 Serial Programmable Controller Special relay 5

 20-4

5.6 PC operation mode（M）

Note 1:
In the following table, the column ‘Latch from’ and ‘Latch end’ can be modified inside the set
range. 0: saving according to the requirement you set. 1: saving all the data regardless of the set
requirements or set range.

Device Mnemonic Point Start End Latch
from

Latch
end

Latch set
range

Supplementary relay M 3072 0 3071 500 1023 0-1023
State S 1000 0 999 500 999 0-999
Timer T 256 0 255
Counter 16bit C 500 0 199 100 199 0-199
Counter 32bit C 56 200 255 200 255 200-255
Data register D 8000 0 7999 200 511 0-511

Device
No.

Function Operation

8031 Non-retentive register all clear(when

executing END instruction)
When M8031 ON, the ON/ OFF status
Y/M/S/T/C and present value of T/C/D are
reset. However, special Data register will
not be cleared.

8032 Retentive register all clear(when executing
END instruction)

When M8032 ON, the retentive registers are
reset.

8033 Register hold in stop mode note:1 Saving mode for Register
0: STOP→RUN, TP03 saves according to
requirement
1: STOP→RUN,TP03 saves all data

8034 Output prohibit 1: output 0; 0: output Y
8035 Enforced operation mode
8036 Enforced Run instruction
8037 Enforced Stop instruction

8039 Constant scan mode 1: ENABLE； 0: DISABLE

This register will not be initiated in Power
ON.

TP03 Serial Programmable Controller Special relay 5

 20-5

5.7 PC mode（D）

Device
No.

Function Operation

8039 Constant scan time Default: 0, unit: ms

TP03 Serial Programmable Controller Special relay 5

 20-6

5.8 Step ladder flagss（M）

5.9 Step ladder flags（D）

Device
No.

Function Operation

8040 STL transfer disable M8040 ON, STL transfer is disabled.
8041 STL transfer start When M8041 ON, STL state transfer is enabled in automatic

operation
8046 STL state ON When M8047 is ON and any one of S0~S899 is on, M8064 will

be ON.
8047 Enable STL monitor As long as M8047 is ON, D8040~D8047 are enabled.
8048 Annunciator ON IVM8049 ON, and any one of S900~S999 is on, M8048 will be

ON
8049 Enable Annunciator M8049 ON, D8049 is enabled.

Device
No.

Function Operation

8040
8041
8042
8043
8044
8045
8046
8047

Address for ON State

8048
8049 The minimum address for ON

State among (S900 ~ S999)

TP03 Serial Programmable Controller Special relay 5

 20-7

5.10 Interruption disable（M）

5.11 UP/DOWN counting set device（M）

Device No. Function Operation
8200 UP/DOWN counting set for C200
8201 UP/DOWN counting set for C201
8202 UP/DOWN counting set for C202
8203 UP/DOWN counting set for C203
8204 UP/DOWN counting set for C204
8205 UP/DOWN counting set for C205
8206 UP/DOWN counting set for C206
8207 UP/DOWN counting set for C207
8208 UP/DOWN counting set for C208
8209 UP/DOWN counting set for C209
8210 UP/DOWN counting set for C210
8211 UP/DOWN counting set for C211
8212 UP/DOWN counting set for C212
8213 UP/DOWN counting set for C213
8214 UP/DOWN counting set for C214
8215 UP/DOWN counting set for C215
8216 UP/DOWN counting set for C216
8217 UP/DOWN counting set for C217
8218 UP/DOWN counting set for C218
8219 UP/DOWN counting set for C219
8220 UP/DOWN counting set for C220
8221 UP/DOWN counting set for C221
8222 UP/DOWN counting set for C222

Device No. Function Operation
8050 Input interruption disable(I00x)
8051 Input interruption disable(I10x)
8052 Input interruption disable(I20x)
8053 Input interruption disable(I30x)
8054 Input interruption disable(I40x)
8055 Input interruption disable(I50x)
8056 Timing interruption disable(I6xx)
8057 Timing interruption disable(I7xx)

8058 Timing interruption disable(I8xx)
8059 Counting interruption disable I010~I060 interruption disable

TP03 Serial Programmable Controller Special relay 5

 20-8

8223 UP/DOWN counting set for C223
8224 UP/DOWN counting set for C224
8225 UP/DOWN counting set for C225
8226 UP/DOWN counting set for C226
8227 UP/DOWN counting set for C227
8228 UP/DOWN counting set for C228
8229 UP/DOWN counting set for C229
8230 UP/DOWN counting set for C230
8231 UP/DOWN counting set for C231
8232 UP/DOWN counting set for C232
8233 UP/DOWN counting set for C233
8234 UP/DOWN counting set for C234
8241 UP/DOWN counting set for C241
8242 UP/DOWN counting set for C242
8243 UP/DOWN counting set for C243
8244 UP/DOWN counting set for C244
8245 UP/DOWN counting set for C245
8246 UP/DOWN counting set for C246
8247 UP/DOWN counting set for C247
8248 UP/DOWN counting set for C248
8249 UP/DOWN counting set for C249
8250 UP/DOWN counting set for C250
8251 UP/DOWN counting monitor for C251
8252 UP/DOWN counting set for C252
8253 UP/DOWN counting monitor for C253
8254 UP/DOWN counting set for C254
8255 UP/DOWN counting set for C255

5.12 Register capacity（D）

Device No. Function Operation
8102 Data register content

TP03 Serial Programmable Controller Special relay 5

 20-9

5.13 Devices（M）

5.14 Error detection（D）

5.15 Communication and link（M）I

For RS485 port
Device No. Function Operation
8121 RS485 communication port send data is ready RS, MBUS
8122 RS485 communication port sending flag RS, MBUS
8123 RS485 communication port receiving data end

flag
RS, MBUS

8124 RS485 communication port MBUS MBUS

Device
No.

Function Operation

8061 PLC hardware check PLC hardware error

8064 Parameter check
8065 Syntax check
8066 Program check
8067 Operation check
8068 Operation error latch
8109 Output update check
M8069 I/O bus check

Device
No.

Function Operation

8061 Error code

8063 Error code
8064 Error code
8065 Error code
8066 Error code
8067 Error code
8068 Error code
8109 Address of Y in output update error

TP03 Serial Programmable Controller Special relay 5

 20-10

instruction error
8129 RS485 communication port communication

over time.
RS, MBUS

For expansion communication port

For RMIO
Device

No.
Function Operation

8335 RMIO data in transmission
8336 RMIO data transmission error (master)
8337 RMIO data transmission error (slave 1)
8338 RMIO data transmission error (slave 2)
8339 RMIO data transmission error (slave 3)
8340 RMIO data transmission error (slave 4)
8341 Expansion communication port is under RMIO
8342 RS 485 communication port is under RMIO

5.16 Communication and link（D）I

For RS485 port

Device No. Function Operation
8321 Expansion communication port send data is

ready
RS,MBUS

8322 Expansion communication port sending flag RS,MBUS
8323 Expansion communication port receiving data

end flag
RS,MBUS

8324 Expansion communication port MBUS
instruction error

MBUS

8329 Expansion communication port communication
over time.

RS,MBUS

Device No. Function Operation
8120 Communication format RS485 communication port 89Hex
8121 Address Read-only default: 01
8122 Remaining data number of RS485

sending data

8123 Number of RS485 Data
received

8124 Start character RS485 communication port, RS instruction 02Hex
8125 End character RS485 communication port, RS instruction 03Hex
8129 Communication watchdog time RS485 communication port, RS and MBUS instruction

TP03 Serial Programmable Controller Special relay 5

 20-11

For expansion communication port

For RMIO

Device No. Function Operation
8320 Communication format Expansion communication port（RS485/RS232）89Hex
8321 Address PC/PDA communication port 89HEx
8322 Remaining data number of sending data Expansion communication port
8323 Number of RS485 Data received Expansion communication port
8324 Start character Expansion communication port, RS instruction 02Hex
8325 End character Expansion communication port RS instruction 03Hex
8329 Communication watchdog time Expansion communication port (RS and MBUS）

Device No. Function Operation
8373 RMIO slave setting state
8374 RMIO slave setting
8376 RMIO slave
8377 RMIO slave number setting
8379 RMIO retry times
8380 RMIO monitor time
8331 Current scan time
8332 Max scan time
8333 Error counting number (master)
8334 Error counting number (slave 1)
8335 Error counting number (slave 2)
8336 Error counting number (slave 3)
8337 Error counting number (slave 4)
8338 Error code (master)
8339 Error code (slave 1)
8340 Error code (slave 2)
8341 Error code (slave 3)
8342 Error code (slave 4)

TP03 Serial Programmable Controller Special relay 5

 20-12

5.1 Communication and link （M） II

DTLK
Device No. Function Operation

8400 Data sending error (master)
8401 Data sending error(slave 1)
8402 Data sending error(slave 2)
8403 Data sending error(slave 3)
8404 Data sending error(slave 4)
8405 Data sending error(slave 5)
8406 Data sending error(slave 6)
8407 Data sending error(slave 7)
8408 Data sending error(slave 8)
8409 Data sending error(slave 9)
8410 Data sending error(slave 10)
8411 Data sending error(slave 11)
8412 Data sending error(slave 1 2)
8413 Data sending error (slave 13)
8414 Data sending error(slave 14)
8415 Data sending error(slave 15)
8416 Data sending
8417 Expansion communication port is set as DTLK
8418 RS485 port is set as DTLK

5.2 Communication and link（D）II

DTLK

8401 Current scan time
8402 Max scan time
8403 Error counting number (master)
8404 Error counting number (slave1)
8405 Error counting number (slave2)
8406 Error counting number (slave3)
8407 Error counting number (slave4)
8408 Error counting number (slave5)
8409 Error counting number (slave6)
8410 Error counting number (slave7)

8173 Set state of master Data Link
8174 Set state of slave Data Link
8175 Set state of refresh range Data Link
8176 set Master address Data Link
8177 set Slaver address Data Link
8178 set Refresh range Data Link
8179 Retry times Data Link
8180 Monitor time Data Link

TP03 Serial Programmable Controller Special relay 5

 20-13

8411 Error counting number (slave8)
8412 Error counting number (slave9)
8413 Error counting number (slave10)
8414 Error counting number (slave11)
8415 Error counting number (slave12)
8416 Error counting number (slave13)
8417 Error counting number (slave14)
8418 Error counting number (slave15)
8419 Error code (master)
8420 Error code (slave 1)
8421 Error code (slave2)
8422 Error code (slave3)
8423 Error code (slave4)
8424 Error code (slave5)
8425 Error code (slave6)
8426 Error code (slave7)
8427 Error code (slave8)
8428 Error code (slave9)
8429 Error code (slave10)
8430 Error code (slave11)
8431 Error code (slave12)
8432 Error code (slave13)
8433 Error code (slave14)
8434 Error code (slave15)

TP03 Serial Programmable Controller Special relay 5

 20-14

5.3 High speed and position（M）

5.4 Expansion （M）

8130 F55(HSZ) High speed counter zone
compare mode

8131 Finish flag for F55
8132 F55(HSZ),F57(PLSY) speed mode
8133 F55,F57 performing end flag
8134 Reserved
8135 Reserved
8136 Reserved
8137 Reserved
8138 Reserved
8139 Reserved
8140 FNC156(ZRN)CLR signal output enable
8141 Reserved
8142 Reserved
8143 Reserved
8144 Reserved
8145 Y000 pulse output stops
8146 Y001 pulse output stops
8147 Y000 pulse output monitoring (busy/read)
8148 Y001 pulse output monitoring (busy/read)
8149 Reserved

8158 Reserved
8159 Reserved
8160 F17(XCH) SWAP
8161 8 octal processing mode (76,80,83,87,84)
8162 High speed parallel link mode
8163
8164
8165 Reserved
8166 Reserved
8167 F71(HKY)HEX data processing
8168 F13(SMOV)DE HEX processing
8169

TP03 Serial Programmable Controller Special relay 5

 20-15

5.5 High speed and position（D）

8130 High speed counter zone compare
8131 Contains the number of the current record being

processed in the HSZ comparison table when
the PLSY operation has been enabled

8132 Frequency (HSZ, PLSY)
8133
8134 Target pulse
8135
8136 Accumulated value for output pulse of Y000 and

Y001

8137
8138
8139
8140 F57, 59(PLSR), Accumulated value for output

pulse of Y000 or present value of position
instruction.

8141
8142 F57, 59(PLSR), Accumulated value for output

pulse of Y001 or present value of position
instruction.

8143
8144
8145 Offset speed for F156,F158,F159
8146 Fastest speed
8147
8148 Initial value
8149

TP03 Serial Programmable Controller Special relay 5

 20-16

5.6 OP07/08（M）

8280 Key F1
8281 Key F2
8282 Key F3
8283 Key F4
8284 Key F5
8285 Key F6
8286 Key F7
8287 Key F8
8288 Key F9
8289 Key F10
8290 Key F11
8291 Key F12
8292 Up
8293 Down
8294 Left
8295 Right
8296 Key TMR
8297 Key CNT
8298 Key ENT
8299 Key MOD1
8300 Key MOD2
8301 Key ESC
8302 Reserved
8303 Reserved

TP03 Serial Programmable Controller Special relay 5

 20-17

5.7 OP07/08（D）

8280 First line content defaulted
8281 Second line content defaulted
8282 First line content user defined
8283 First line content user defined
8284 OP07/08 display mode setting
8285 OP07/08 present display mode
8286 OP07/08 display number range
8287 Error code
8288
8289 Present number for timer mode
8290 Present number for Counter mode
8291 Present number for user mode1
8292 Present number for user mode2
8293 Present number for user mode3
8294 Present number for user mode4
8295 First line content for F192 mode
8296 Second line content for F192 mode
8297 Data format set 1
8298 Data format set 2
8299 Data format set 3
8300 Data format set 4

TP03 Serial Programmable Controller Special relay 5

 20-18

5.8 AD/DA（M）

5.9 AD/DA（D）

8256 TP02-4AD number
8257 TP03-AD number （0~7）
8258 TP02-2DA channels（0，2）
8259 TP03-DA channel（0~8）
8260 AD filter mode

8261 AD1～4 channel mode set
8262 AD5～8 channel mode set
8263 AD9～12 channel mode set
8264 AD13～16 channel mode set
8265 AD17～20 channel mode set
8266 AD21～24 channel mode set
8267 AD25～28 channel mode set
8268 AD29～32 channel mode set
8269 AD33～36 channel mode set
8270 AD37～40 channel mode set
8271 AD41～44 channel mode set
8272 AD45～48 channel mode set
8273 AD49～52 channel mode set
8274 AD53～56 channel mode set
8275 AD57～60 channel mode set
8276 Reserved
8277 DA1～4 channel mode set
8278 DA5～8 channel mode set
8279 DA9～10 channel mode set

8381 DA channel 1data
8382 DA channel 2data
8383 DA channel 3data
8384 DA channel 4data
8385 DA channel 5data
8386 DA channel 6 data
8387 DA channel 7 data
8388 DA channel 8 data

8257 Total quantity of AD modules is wrong
8258 Total quantity of DA module channel is wrong

TP03 Serial Programmable Controller Special relay 5

 20-19

8389 DA channel 9 data
8390 DA channel 10 data

8436 AD channel 1 data
8437 AD channel 2 data
8438 AD channel 3 data
8439 AD channel 4 data
8440 AD channel 5 data
8441 AD channel 6 data
8442 AD channel 7 data
8443 AD channel 8 data
8444 AD channel 9 data
8445 AD channel 10 data
8446 AD channel 11 data
8447 AD channel 12 data
8448 AD channel 13 data
8449 AD channel 14 data
8450 AD channel 15 data
8451 AD channel 16 data
8452 AD channel 17 data
8453 AD channel 18 data
8454 AD channel 19 data
8455 AD channel 20 data
8456 AD channel 21 data
8457 AD channel 22 data
8458 AD channel 23 data
8459 AD channel 24 data
8460 AD channel 25 data
8461 AD channel 26 data
8462 AD channel 27 data
8463 AD channel 28 data
8464 AD channel 29 data
8465 AD channel 30 data
8466 AD channel 31 data
8467 AD channel 32 data
8468 AD channel 33 data
8469 AD channel 34 data
8470 AD channel 35 data
8471 AD channel 36 data
8472 AD channel 37 data
8473 AD channel 38 data
8474 AD channel 39 data
8475 AD channel 40 data

TP03 Serial Programmable Controller Special relay 5

 20-20

8476 AD channel 41 data
8477 AD channel 42 data
8478 AD channel 43 data
8479 AD channel 44 data
8480 AD channel 45 data
8481 AD channel 46 data
8482 AD channel 47 data
8483 AD channel 48 data
8484 AD channel 49 data
8485 AD channel 50 data
8486 AD channel 51 data
8487 AD channel 52 data
8488 AD channel 53 data
8489 AD channel 54 data
8490 AD channel 55 data
8491 AD channel 56 data
8492 AD channel 57 data
8493 AD channel 58 data
8494 AD channel 59 data
8495 AD channel 60 data

TP03 Serial Programmable Controller Execution Times

 6-1

6 Execution Times
6.1 Basic Instructions

Execution Time in 　u sec
Mnemonic Object Devices Steps

ON OFF
LD
LDI
AND
ANI
OR
ORI

X,Y,M,S,T,C
Special M

1

LDP
LDF
ANP
ANF
ORP
ORF

X,Y,M,S,T,C 1

ANB
ORB
MPS
MRD
MPP
INV

Not applicable 1

MC Nest level M,Y 3

MCR Nest level 2
NOP
END

Not applicable 1

STL S
RET Not applicable

1

Y,M 1
S 2
Special M 2
T-K 3
T-D 3
C-K(16 bit) 3
C-D(16 bit) 3
C-K(32 bit) 5

OUT

C-D(32 bit) 5
Y,M
S
S when used in an
STL step

 SET

Special M

2

TP03 Serial Programmable Controller Execution Times

 6-2

Execution Time in 　u sec
Mnemonic Object Devices Steps

ON OFF
Y,M 1
S 2
Special M 2
T,C 2

RST

D,V,Z, special D 3
PLS 2
PLF 2
P 0~63 1
I 1

Note 1:

 “n” in the formulae to calculate the ON/OFF execution time, refers to the
number of STL instructions at the current parallel/merge branch. Thus
the value of “n” will fall in the range 1 to 8.

6.2 Applied Instructions
Application instruction Processing

time(µs) Instruction type No. Mnem
onic

function
16/32
Bit

P

ON OFF
00 CJ Conditional jump 16 √
01 CALL Call subroutine 16 √
02 SRET Subroutine return 16
03 IRET Interrupt return *1
04 EI Enable interrupt *1
05 DI Disable interrupt *1
06 FEND First end *1
07 WDT Waterdog timer 16 √
08 FOR Start of a for/next loop *1

Program flow

09 NEXT End a for/next loop *1
10 CMP Compare 16/ 32 √
11 ZCP Zone compare 16/ 32 √
12 MOV Move 16/ 32 √
13 SMOV Shift move 16 √
14 CML Compliment 16/ 32 √
15 BMOV Block move 16 √
16 FMOV Fill move 16/ 32 √
17 XCH Exchange 16/ 32 √
18 BCD BCD binary coded decimal 16/ 32 √

Move and
compare

19 BIN BIN binary 16/ 32 √
20 ADD Addition 16/ 32 √
21 SUB Subtraction 16/ 32 √

Arithmetic and
logic operations

22 MUL Multiplication 16/ 32 √

TP03 Serial Programmable Controller Execution Times

 6-3

Application instruction Processing
time(µs) Instruction type No. Mnem

onic
function

16/32
Bit

P

ON OFF
23 DIV Division 16/ 32 √
24 INC Increment 16/ 32 √
25 DEC Decrement 16/ 32 √
26 WAND Word and 16/ 32 √
27 WOR Word or 16/ 32 √
28 WXOR Word exclusive or 16/ 32 √
29 NEG Negation 16/ 32 √

1. These instructions require NO preliminary contact devices such as LD, AND, OR

etc.
2. Where “n” is referred to this identifies the quantity of registers to be manipulated.

“n” can be equal or less than 512.
3. Where “n” is referred to this identifies the quantity of bit devices to be manipulated.

“n” can be equal or less than selected operating mode, i.e. if 32 bit mode is
selected then “n” can have a value equal or less than 32.

4. Where "n" is referred to this identifies the quantity of bit devices to be
manipulated.

5. Where "n" is referred to this identifies the quantity devices to be manipulated. "n"
can have any value taken from the range 2 through 512.

6. Where "n" is referred to this identifies the range of devices to be reset. The device
type being reset is identified by the device letter in brackets in the '16/32 bit'
column.

7. Where "n" is referred to this identifies the number of devices the mean is to be
calculated from. The value of "n" can be taken from the range 1 through 64.

8. Where "n" is referred to this identifies the range of devices to be refreshed. The
value of "n" is always specified in units of 8, i.e 8, 16, 24.....128. The maximum
allowable range is dependent on the number of available inputs/outputs, i.e. FX0
is limited to 16 as a maximum batch that can be refreshed, where as FX can use
128.

9. Where "n" is referred to this identifies the time setting for the input filters
operation. "n" can be selected from the range 0 through to 60 msec.

10. There are limits to the total combined use of these instructions.
11. Where "n" is referred to this identifies the number of output points. "n" may have a

value equal or less than 64.
12. Where "n" is referred to this identifies the number of words read or written

FROM/TO the special function blocks.
13. Where "n" is referred to this identifies the number of octal (8 bit) words read or

written when two PLCs are involved in a parallel running function.
14. Where "n" is referred to this identifies the number of elements in a stack, for 16 bit

operation n has a maximum of 256. However, for 32 bit operation n has a
maximum of 128.

TP03 Serial Programmable Controller Execution Times

 6-4

15. Where "m1" is referred to this identifies the number of elements in the data table.
Values of m1 are taken from the range 1 to 32. For a the SORT instruction to
completely process the data table the SORT instruction will be processed m1
times.

7. PLC Device Tables
Item Specification Remarks

Operation control method Cyclic operation by stored program

I/O control method
Batch processing method (when END
instruction is executed)

I/O refresh instruction is
available

Operation processing time Basic instructions: 0.31 to 0.9 µs Applied instructions: several µs
Programming language

Ladder/Boolean/SFC
Step ladder can be used to
produce an SFC style program

Program capacity 8000 /16000 steps Provided by built in

Number of instructions
Basic sequence instructions: 36
Step ladder instructions: 2
Applied instructions: 139

A Maximum 139 applied
instructions are available

I/O configuration

Max hardware I/O configuration points 256, dependent on user selection
(Max. software addressable Inputs 256, Outputs 256)

General 7680 points M0 to M7679 Auxiliary
relay
(M coils) Special 512 points M8000 to M8511

General 4096 points S0 to S4095
Latched 500 points (subset) S500 to S999
Initial 10 points(subset) S0 to S9

State
relays
(S coils)

Annunciator 100 points S900 to S999
100 msec Range: 0 to 3,276.7 sec；200 points T0 to T199
10 msec Range: 0 to 327.67 sec；46 points T200 to T245
1 msec
retentive

Range: 0 to 32.767 sec；4 points T246 to T249 Timers (T)

100 msec
retentive

Range: 0 to 3,276.7 sec；6 points T250 to T255

General
16 bit

Range: 1 to 32,767 counts
200 points

C0 to C199
Type: 16 bit up counter

Latched
16 bit

100 points (subset)
C100 to C199
Type: 16 bit up counter

General
32 bit

Range: -2,147,483,648 to
2,147,483,647
35 points

C200 to C234
Type: 32 bit up/down counter

Counters
(C)

Latched
32 bit

15 points (subset)
C220 to C234
Type: 15 bit up/down counter

1 phase C235 to C240 6 points
1 phase c/w
start stop input

C241 to C245 5 points

2 phase C246 to C250 5 points

High speed
counters
(C)

A/B phase

Range: -2,147,483,648 to
+2,147,483,647 counts
General rule: Select counter
combinations with a combined counting
frequency of 20kHz or less.
Note all counters are latched C251 to C255 5 points

Item Specification Remarks

General 8000 points
D0 to D7999
Type: 16 bit data storage
register pair for 32 bit device

Special 512 points
From the range D8000 to D8511
Type: 16 bit data storage
register

Data
registers
(D)

Index 32 points
V0 to V15 and Z0 to Z15
Type: 16 bit data storage
register

For use
with CALL

256 points P0 to P255
Pointers
(P) For use

With interrupts
6 input points, 3 timers, 6 counters

I00□ to I50□
I6□□ to I8□□
I010 to I060

Nest levels 8 points for use with MC and MCR N0 to N7

Decimal K
16 bit: -32,768 to +32,767
32 bit: -2,147,483,648 to
+2,147,483,647

Numbers

Hexadecimal H
16 bit: 0000 to FFFF
32 bit: 00000000 to FFFFFFFF

